The Thin Lens Equation
\Rightarrow We must assume that all of the lenses we discuss are thin lenses; otherwise we will have to take into account lateral displacement of the light rays through the lens.

$$
\frac{1}{d_{0}}+\frac{1}{d_{i}}=\frac{1}{f}
$$

\Rightarrow This is called the lens equation.
$\Rightarrow d_{o}=$ distance to the object from optical centre
$\Rightarrow d_{i}=$ distance to the image from optical centre
$\Rightarrow f=$ focal length of the lens
Sign Convention

1. All distances are measured from the optical centre of the lens.
2. Distances of real objects and images are positive.
3. Distances of virtual images are negative.
4. Object heights $\left(h_{0}\right)$ and image heights $\left(h_{i}\right)$ are positive when measured upward and negative when measured downward from the principle axis.
\Rightarrow To take into account the sign convention, the magnification equation becomes:

$$
M=\frac{h_{i}}{h_{0}}
$$

$$
M=\frac{h_{i}}{h_{0}}=-\frac{d_{i}}{d_{0}} \quad M=-\frac{h_{0}}{d_{0}}
$$

\Rightarrow A negative magnification means that the image is inverted from the original orientation.

* A negative focal length means the lens is diverging. and viceversa.

1. An object 8.0 cm high is 18 cm from a converging lens having a focal length of 10.0 cm . ff

$$
\begin{aligned}
& d_{i}=\left\{\begin{array}{l}
\text { a. How far is the image from the optical centre of the } \\
\text { lens? }
\end{array} \frac{1}{d_{0}}+\frac{1}{d_{i}}=\frac{1}{f}\right. \\
& h_{0}=8.0 \mathrm{~cm} \\
& d_{0}=18 \mathrm{~cm} \quad \frac{1}{18}+\frac{1}{d_{i}}=\frac{1}{10}=\frac{1}{d_{i}}=\frac{1}{10}-\frac{1}{18} \\
& \begin{array}{l}
f=10 \mathrm{~cm} \\
d_{i}=7 \cdot \text { b. How tall is the image? } \\
d_{i}
\end{array} \quad \Rightarrow 0.0444 \ldots \\
& \frac{h_{i}}{h_{0}}=-\frac{d_{i}}{d_{0}} \Rightarrow \frac{d_{i}=(0.0444)^{-1}}{8}=\frac{-22.5}{18} \quad d_{i}=22.5
\end{aligned}
$$

2. A diverging lens has a total length of -4.0 cm . If an object is placed 8.0 cm from the lens, how from the optical centre is the image?

$$
\begin{gathered}
d_{0}=8 \mathrm{~cm} \quad \begin{array}{r}
* \\
d_{i}=? \quad \frac{1}{d_{0}}+\frac{1}{d_{i}}=\frac{1}{f} \\
f=-4.0 \mathrm{~cm} \\
\frac{1}{8}+\frac{1}{d_{i}}=\frac{1}{-4} \Rightarrow \frac{1}{8}+\frac{1}{d_{i}}=\frac{-1}{4} \\
\frac{1}{d_{i}}=\frac{-1}{4}-\frac{1}{8}=-0.375 \\
d_{i}= \\
=-2.7-0.375)^{-1}
\end{array}
\end{gathered}
$$

