\#2) $x_{\text {conp }} \rightarrow \cos \theta$
$y \operatorname{comp} \rightarrow \sin \theta$

$$
\begin{aligned}
F_{\text {net } x} & =0 \\
F_{\text {netx }} & =F_{f}+F_{a x}+F_{g x} \\
0 & =F_{f}+7 \cos 20^{\circ} \\
F_{f} & =-6.6 \mathrm{~N}
\end{aligned}
$$

b)

$$
\begin{aligned}
& F_{\text {nety }}=0 \\
& F_{\text {nety }}=F_{g}+F_{a y}+F_{N} \\
& O=-(2.5)(9.81)+7 \sin 20+F_{N} \\
& F_{N}=22 \mathrm{~N} \\
& F_{f}=\mu F_{N}
\end{aligned}
$$

\#3)

$$
\begin{aligned}
F_{\text {netx }} & =0 \\
& =F_{a x}+F_{f} \\
0 & =F_{a x}-34 \mathrm{~N} \\
F_{a x} & =34 \mathrm{~N}
\end{aligned}
$$

$$
\begin{gathered}
\cos \theta=\frac{34}{54} \\
\theta=51^{\circ}
\end{gathered}
$$

6)

$$
\begin{aligned}
& a_{g x}=a_{g} \sin \theta \\
& 2.0=9.81 \sin \theta \\
& \theta=12^{\circ}
\end{aligned}
$$

\#7)

Find Fretox=?

$$
v_{f}=?
$$

$$
v_{0}=0 \mathrm{~m} / \mathrm{s}
$$

$$
a_{n d x}=\text { ? }
$$

$$
F_{\text {netx }}=F_{g x}+F_{f x}
$$

$$
\rightarrow \mathrm{Fgx}_{\mathrm{gx}}=\mathrm{Fg}_{\mathrm{g}}=7 \sin \theta
$$

$$
\begin{aligned}
& =70.6 \operatorname{Sin} 30^{\circ} \\
&
\end{aligned}
$$

$$
=35.3 \mathrm{~N}
$$

$$
F_{f}=? \quad F_{f}=\mu F_{N}
$$

$$
\begin{aligned}
& F_{\text {noty }}=F_{N}+F_{g y} \\
& O=F_{N}+(-70.6 \cos 30) \\
& F_{N}=61.14 \mathrm{~N} \\
& F_{f}=0.45(61.14) \\
& F_{f}=27.5 \mathrm{~N} \\
& F_{\text {netx }}=F_{g x}+F_{f x} \\
&=35.3+(-27.5) \\
& F_{\text {netx }}=7.787 \mathrm{~N} \\
& a_{\text {netx }}=\frac{F_{\text {natx }}}{m}=\frac{7.787}{7.2}=1.08 \mathrm{~m} / \mathrm{s}^{2} \\
& v_{f}^{2}=v_{0}^{2}+2 \mathrm{ad} \\
& v_{f}=\sqrt{0+2(1.08)(65)}=12 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

\#8)

$$
\mu=\frac{F_{f}}{F_{N}}=\frac{p x a_{f}}{h a_{N}}=\frac{a_{f}}{a_{N}}
$$

$$
\begin{aligned}
& a_{\text {netx }}=a_{g x}+a_{f} \\
& 4.62=9.81 \sin 38.5^{\circ}+a_{f} \\
& 4.62-9.81 \sin 38.5=a_{f} \\
& -1.48 \mathrm{~m} / 5^{2}=a_{f}
\end{aligned}
$$

$$
\begin{aligned}
\left|a_{N}\right| & =\left|a_{g y}\right|=\left|9.81 \cos 38.5^{\circ}\right| \\
& =7.67 \mathrm{~m} / \mathrm{s}^{2} \\
\mu & =\frac{\left|a_{f}\right|}{\left|a_{N}\right|}=\frac{1.48}{7.67}=0.19
\end{aligned}
$$

$F_{\text {net }}=O$ (constant speed) $=F_{g x}+F_{E_{0}}+F_{\text {app }}$ frictionless

$$
\begin{aligned}
& 0=-(600 \mathrm{~N}) \sin 42^{\circ}+F_{\text {app }} \\
& 0=-401 \mathrm{~N}+F_{a p p} \\
& F_{\text {app }}=401 \mathrm{~N}
\end{aligned}
$$

b) If $F_{\text {app }}=550 \mathrm{~N}$ what is acceleration of object?

$$
\begin{aligned}
& F_{\text {net }}= F_{g x}+F_{\text {app }} \\
&=-401+550 \\
& F_{\text {net }}= 149 \mathrm{~N} \\
& F_{\text {net }}=(m)\left(a_{\text {not }}\right) \\
& 149=m\left(a_{\text {net }}\right) \\
& m=\frac{F_{g}}{9.81} \quad \frac{149}{61}=a_{\text {net }} \\
& m=\frac{600 \mathrm{~N}}{9.81}=61 \mathrm{~kg} \quad 2.4 \mathrm{~m} / \mathrm{s}^{2}=a_{\text {ne f }}
\end{aligned}
$$

