1. If $\mathbf{A}=28 \mathrm{~m}\left[\mathrm{E} 75^{\circ} \mathrm{N}\right], \mathbf{B}=35 \mathrm{~m}\left[\mathrm{E} 24^{\circ} \mathrm{S}\right], \mathbf{C}=22 \mathrm{~m}\left[\mathrm{~W} 50^{\circ} \mathrm{N}\right]$, and $\mathrm{D}=40 \mathrm{~m}\left[\mathrm{~W} 30^{\circ} \mathrm{S}\right]$ Find:
a. $A+B$
$\left\{57 \mathrm{~m}\left[\mathrm{E} 46^{\circ} \mathrm{N}\right]\right\}$
b. $4 C+3 D \quad\left\{160 \mathrm{~m}\left[\mathrm{~W} 2.6^{\circ} \mathrm{N}\right]\right\}$
c. $A-B \quad\left\{27.8 \mathrm{~m}\left[\mathrm{~W} 27^{\circ} \mathrm{N}\right]\right\}$
d. $2 \mathrm{D}-\mathrm{C} \quad\left\{79.2 \mathrm{~m}\left[\mathrm{~W} 46^{\circ} \mathrm{S}\right]\right\}$
e. $4 B+D-3 C\left\{136 m\left[E 5.7^{\circ} \mathrm{S}\right]\right\}$
2. What is the resultant displacement of $25 \mathrm{~m}[\mathrm{~N}], 18 \mathrm{~m}[\mathrm{~S}]$, and 12 m [E]? What is the average velocity if the trip took 37 seconds? $\left\{d=13.9 \mathrm{~m}\left[\mathrm{E} 30^{\circ} \mathrm{N}\right] ; \mathrm{v}=0.376 \mathrm{~m} / \mathrm{s}\left[\mathrm{E} 30^{\circ} \mathrm{N}\right]\right\}$
3. Find the acceleration of an object that goes from $15.0 \mathrm{~m} / \mathrm{s}[\mathrm{S}]$ to $15 \mathrm{~m} / \mathrm{s}[\mathrm{W}]$ in 2.0 seconds. $\left\{\mathrm{a}=10.6 \mathrm{~m} / \mathrm{s}^{2}\left[\mathrm{~W} 45^{\circ} \mathrm{S}\right]\right\}$
4. A car is initially moving $7.5 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$. After 3.0 seconds it is moving $10.0 \mathrm{~m} / \mathrm{s}\left[\mathrm{E} 40^{\circ} \mathrm{N}\right]$. Calculate:
a. The acceleration. $\left\{\mathrm{a}=2.57 \mathrm{~m} / \mathrm{s}^{2}\left[\mathrm{E} 8.1^{\circ} \mathrm{S}\right]\right\}$
b. The velocity after 6.0 s if the acceleration remains constant. $\left\{\mathrm{v}_{\mathrm{f}}=16.2 \mathrm{~m} / \mathrm{s}\left[\mathrm{E} 19^{\circ} \mathrm{N}\right]\right\}$
5. What is the acceleration of a car that changes its velocity from $20.0 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$ to $20.0 \mathrm{~m} / \mathrm{s}\left[\mathrm{E} 45^{\circ} \mathrm{N}\right]$ in a time of 5.00 s ? $\left\{\mathrm{a}=3.06 \mathrm{~m} / \mathrm{s}^{2}\left[\mathrm{E} 23^{\circ} \mathrm{S}\right]\right\}$
6. A 500 kg airplane in initially flying $200 \mathrm{~m} / \mathrm{s}\left[\mathrm{E} 45^{\circ} \mathrm{N}\right]$ turns such that after 7.00 s the velocity is $140 \mathrm{~m} / \mathrm{s}$ [E]. Find:
a. The acceleration. $\left\{\mathrm{a}=20.2 \mathrm{~m} / \mathrm{s}^{2}\left[\mathrm{~W} 89^{\circ} \mathrm{S}\right]\right\}$
b. The average force acting during the turn. $\left\{\mathrm{F}=10100 \mathrm{~N}\left[\mathrm{~W} 89^{\circ} \mathrm{S}\right]\right\}$
7. What is the force required to change to change the velocity of a 1200 kg car from $26.0 \mathrm{~m} / \mathrm{s}$ [E] to $30.0 \mathrm{~m} / \mathrm{s}$ [$\mathrm{E} 30^{\circ} \mathrm{S}$] in a time of 5.00 seconds? $\{\mathrm{F}=3600 \mathrm{~N}[\mathrm{~S}]\}$
8. Three forces act simultaneously on an object. One force is 10.0 N [N], the second is 15 N [W], and the third is 15.0 N $\left[\mathrm{E} 60^{\circ} \mathrm{N}\right]$. Determine the net force? $\left\{\mathrm{F}=24.2 \mathrm{~N}\left[\mathrm{~W} 72^{\circ} \mathrm{N}\right]\right\}$
9. On a boat you are sailing $6.5 \mathrm{~m} / \mathrm{s}\left[\mathrm{E} 20^{\circ} \mathrm{S}\right]$. A gust of wind provides an acceleration equal to $2.1 \mathrm{~m} / \mathrm{s}^{2}\left[\mathrm{E} 60^{\circ} \mathrm{N}\right]$ for 18 seconds.
a. What is your velocity after the 18 seconds? $\left\{v=39.4 \mathrm{~m} / \mathrm{s}\left[\mathrm{E} 51^{\circ} \mathrm{N}\right]\right\}$
b. What is the displacement in during that time? $\left\{d=378 \mathrm{~m}\left[\mathrm{E} 42^{\circ} \mathrm{N}\right]\right\}$
10. A glider is flying $9.2 \mathrm{~m} / \mathrm{s}$ [$\mathrm{E} 25^{\circ} \mathrm{N}$]. A gust of wind changes the glider's trajectory to $11 \mathrm{~m} / \mathrm{s}$ [$\left.\mathrm{E} 14^{\circ} \mathrm{S}\right]$ in 7.9 seconds.
a. What was the acceleration of the glider? $\left\{a=0.88 \mathrm{~m} / \mathrm{s}^{2}\left[E 70^{\circ} \mathrm{S}\right]\right\}$
b. What was the displacement of the glider during that time? $\left\{\mathrm{d}=75 \mathrm{~m}\left[\mathrm{E} 3.7^{\circ} \mathrm{N}\right]\right\}$
c. What was the average force if the glider has a mass of 55 kg ? $\left.\left\{\mathrm{F}=48 \mathrm{~N}\left[\mathrm{E} 70^{\circ} \mathrm{S}\right]\right]\right\}$
11. You are $37 \mathrm{~km}\left[\mathrm{~W} 20^{\circ} \mathrm{N}\right]$ from Miramichi and must move to a position 15 km due West of the city. What displacement is required? $\left\{\mathrm{d}=23 \mathrm{~km}\left[\mathrm{E} 31^{\circ} \mathrm{S}\right]\right\}$

Physics 122: Applications of Vectors

12. A coast guard boat (with a helicopter) is $75 \mathrm{~km}\left[\mathrm{E} 67^{\circ} \mathrm{N}\right]$ from port. A distress call comes in from a fishing vessel located 93 km [E26 ${ }^{\circ} \mathrm{S}$] from port.
a. How far is the fishing boat from the coast guard boat? $\left\{\mathrm{d}=122 \mathrm{~km}\left[\mathrm{E} 64^{\circ} \mathrm{S}\right]\right\}$
b. What is the minimum velocity of the helicopter to reach the boat in distress within 0.5 hours? $\{\mathrm{v}=244 \mathrm{~km} / \mathrm{s}$ [E64 $\left.\left.{ }^{\circ} \mathrm{S}\right]\right\}$
13. When flying your awesome new plane you receive two distress calls from people stranding on two different islands. Island A is 150 km [E] of the airport and Island B is $175 \mathrm{~km}\left[\mathrm{E} 25^{\circ} \mathrm{S}\right]$. You are located 65 km [W10 $\left.{ }^{\circ} \mathrm{S}\right]$. You choose to rescue the closest group of people. Which island are you going to and what is your heading? $\left\{\mathrm{A},\left[\mathrm{E} 3^{\circ} \mathrm{N}\right]\right\}$
14. On a day when the wind is $80.0 \mathrm{~km} / \mathrm{h}[\mathrm{E}]$, an airplane is aimed [$\mathrm{E} 65^{\circ} \mathrm{N}$] and flown at a speed of $320 \mathrm{~km} / \mathrm{h}$. How far and in which direction will the plane fly in 0.33 hours? $\left\{d=1083 \mathrm{~km}\left[E 53^{\circ} \mathrm{N}\right]\right\}$
15. A boat's heading is directly across a river at $5.0 \mathrm{~km} / \mathrm{h}$. The river is flowing east at $3.0 \mathrm{~km} / \mathrm{h}$.
a. What is the velocity of the boat relative to someone standing on the dock where the boat departed?
$\left\{\mathrm{v}=5.8 \mathrm{~km} / \mathrm{h}\left[\mathrm{E} 53^{\circ} \mathrm{N}\right]\right\}$
b. How far down stream does it land if the trip takes 0.5 h ? $\left\{\mathrm{d}_{\mathrm{E}}=1.5 \mathrm{~km}\right\}$
c. How wide is the river? $\left\{\mathrm{d}_{\mathrm{N}}=2.5 \mathrm{~km}\right\}$
16. On a day when the wind is blowing $70 \mathrm{~km} / \mathrm{h}\left[\mathrm{W} 40^{\circ} \mathrm{S}\right.$] you wish to fly to a destination 830 km [$\mathrm{E} 60^{\circ} \mathrm{S}$] in 1.5 hours. What heading and speed should you fly your plane? $\left\{v=545 \mathrm{~km} / \mathrm{h}\left[\mathrm{E} 53^{\circ} \mathrm{S}\right]\right\}$
17. A river has a current of $6.0 \mathrm{~m} / \mathrm{s}[\mathrm{E}]$. What speed must a boat be able to travel to go straight across the river when it is aimed 75° upstream? $\{v=23.2 \mathrm{~m} / \mathrm{s}\}$
18. It is a distance of 500 m straight east to get across a river. The river has a current of $3.7 \mathrm{~m} / \mathrm{s}$ due south. You have a boat that can travel $10 \mathrm{~m} / \mathrm{s}$.
a. Which way should you aim your boat to get directly across the river? $\left\{E 22^{\circ} \mathrm{N}\right\}$
b. How long will it take to cross the river? $\{54 \mathrm{~s}\}$
19. A boat can travel $7.5 \mathrm{~m} / \mathrm{s}$. Which way must it be aimed to travel directly across a river with a current of $3.6 \mathrm{~m} / \mathrm{s}$? $\left\{29^{\circ}\right.$ upstream $\}$
20. A Canadian submarine is 185 km [E22 ${ }^{\circ} \mathrm{S}$] of Halifax. An enemy sub is spotted 425 km [$E 67^{\circ} \mathrm{N}$] of Halifax. The enemy is heading directly towards Halifax at $45 \mathrm{~km} / \mathrm{h}$. What minimum velocity is required for the Canadian submarine to intercept the enemy sub 200 km from Halifax? $\left\{\mathrm{v}_{\text {sub }}=54 \mathrm{~km} / \mathrm{h}\left[\mathrm{W} 70^{\circ} \mathrm{N}\right]\right\}$
21. Sir Physicsalot is chasing the evil Knight Grammarahad from Vector Castle. At a certain time Grammarahad is 79 m [$E 50^{\circ} \mathrm{N}$] of the castle and running with a speed of $6.1 \mathrm{~m} / \mathrm{s}$ and Physicsalot is standing 60 m due east of the castle. What average velocity is required by Physicsalot to intercept Grammarahad in 45 seconds? $\left\{\mathrm{v}=8.6 \mathrm{~m} / \mathrm{s}\left[\mathrm{E} 64^{\circ} \mathrm{N}\right]\right\}$
22. An object is moving $35 \mathrm{~m} / \mathrm{s}$ [$\mathrm{E} 40^{\circ} \mathrm{N}$] and undergoes an acceleration of $3.7 \mathrm{~m} / \mathrm{s}^{2}\left[\mathrm{~W} 10^{\circ} \mathrm{N}\right]$. How much time is required for the displacement to be $609 \mathrm{~m}\left[\mathrm{~W} 72^{\circ} \mathrm{N}\right]$? $\{\mathrm{t}=20 \mathrm{~s}]$
