Light

\Rightarrow Light is the range of frequencies (wavelengths) that can be seen with the human eye. Light travels as an electromagnetic wave and can be thought of as a packet of energy.

> oFor our purposes, we will use the properties of transverse waves to describe light.
> o The main difference is that energy light carries depends on it wavelength (or frequency), not its amplitude.
> - The science of astronomy/astrophysics is all based on observing the EM spectrum that reaches the Earth.

\Rightarrow We see only a small part of the electromagnetic spectrum. The EM spectrum consists of radio, micro, infrared, visible (colour), ultraviolet, X , and gamma rays.

\Rightarrow Visual Spectrum (approximate) oRed: $\quad 600-700 \mathrm{~nm}$ oYellow: $\quad 575-600 \mathrm{~nm}$ oGreen: $\quad 500-575 \mathrm{~nm}$ oBlue: $\quad 425-500 \mathrm{~nm}$ oViolet: $\quad 375-425 \mathrm{~nm}$

Matt Olter sdorf et al.: www.twcac.org/ Tutorials/notes(3). htm

THE ELECTROMAGNETIC SPECTRUM

\Rightarrow We see objects because they reflect light (non-luminous bodies) or they emit light (luminous bodies)
-We see the visual spectrum of light. Certain colours appear because an object absorbs all light except that colour.

- Black objects absorb all light and reflect none.
-White objects reflect all light and absorb none.
\Rightarrow Light travels in a straight-line path (except in extreme gravitational fields); this is called rectilinear propagation.
oWe use the ray model. We use rays to represent the path followed by light. A collection of rays is called a beam of light.

\Rightarrow The speed of light, c , is $299,792,458 \mathrm{~m} / \mathrm{s}$ in a perfect vacuum \rightarrow This is the fastest anything can travel according to Einstein's Theory of Relativity. We round to $\mathrm{c}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
- The speed of light changes as it enters different media, butalt
types of EM ratiation travels at

the same spee in the samemedium.

$o c=f \lambda$, like we studied for
waves.
oSince c is constant, if the frequency increases, wavelength decreases and vise - versa. f and λ are inversely proportional.
\Rightarrow To describe the properties of the EM spectrum we use the unit of nanometers, $\mathrm{nm}\left(1 \mathrm{~nm}=10^{-9} \mathrm{~m}\right)$

Inverse Square Law

The inverse square law applies to rays emitted from a point source. The
same amount of light is spread out over a larger area and is therefore diluted.

$$
\operatorname{Pg} 391-398
$$

