Waves

- **≻** Key Terms
 - ⇒ Frequency, period, amplitude, wavelength, superposition, interference, standing wave, node, resonance frequency, reflection, refraction, diffraction, Doppler shift.
- **▶** Reading: Pg. 336 371
- > Assigned Problems
 - ⇒ Pg. 341 # 1-4.
 - ⇒ Pg. 343 # 1-7.
 - \Rightarrow Pg. 349 # 5 9.
 - \Rightarrow Pg. 353 # 1 8.
 - \Rightarrow Pg. 362 # 1 7.
 - \Rightarrow Pg. 370 # 1 4.
 - **⇔** Chapter Review
 - Pg. 372 # 1 29.

Waves

- A wave is a transfer of energy, in a form of a disturbance usually through a material substance, or medium.
 - ⇒ Electromagnetic Waves

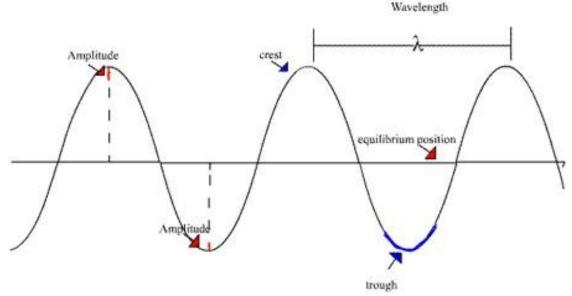
 - ⇒ Water waves
 - ⇒ Pressure waves
- ⇒ When objects repeat a pattern of motion (e.g. a pendulum), we say that object is vibrating or oscillating. (wiimote demo)
 - ⇒ The oscillation is repeated over and over with the same time interval each time.
 - ⇒ One complete oscillation is called a cycle.
 - \Rightarrow The number of cycles per second is called the <u>frequency</u>, f. The frequency is measured in Hertz (Hz).
 - \Rightarrow The <u>period</u>, T, usually measured in seconds, is the time required for one cycle. The frequency and period are reciprocals of each other.

$$frequency = \frac{cycles}{time} = \frac{1}{T}$$

$$period = \frac{time}{cycle} = \frac{1}{f}$$

Examples

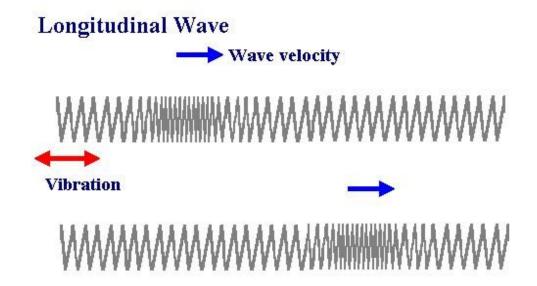
1. A pendulum completes 30 cycles in 15 seconds. Calculate its frequency and period.


2. What is the period of a pendulum that has a frequency of 10 Hz?

Wave Motion & Terminology

- ⇒ Waves transmit energy, not matter.
 - ⇒ It is a disturbance from some normal value of the medium that is transmitted, not the medium itself.
 - ⇒ These types of waves are called <u>periodic waves</u>; where the motions are repeated at regular time intervals.
 - ⇒ A single disturbance is called a pulse, or shock wave. Creating half of a cycle results in a pulse.

Transverse Waves


- ⇒ The particles in the medium vibrate at right angles to the direction in which the wave travels.
 - ⇒ The high section is called the crest, and the low section is called the trough.
 - ⇒ The height of the crest or depth of the trough, from the equilibrium position is called the <u>amplitude</u>.
 - \Rightarrow For periodic waves, the distance between successive crests and troughs is equal and is called the wavelength. The symbol for the wavelength is the Greek letter lambda, λ .
 - ⇒ The period of a transverse wave is the time it takes for one wavelength (one cycle) to pass a fixed point.
 - ⇒ The frequency is the number of wavelengths that passed a fixed point in one second.
 - ⇒ Examples include water waves and making vibrations on a rope.

library.thinkquest.org/. ../Waves/basic.htm

Longitudinal Waves

- ⇒ The vibrations of the particles are parallel to the direction of motion.
 - ⇒ There are a compressions and rarefactions created in longitudinal waves.
 - ⇒ One wavelength is the distance between the midpoints of successive compressions or rarefactions.
 - ⇒ The amplitude is the maximum displacement of the particles from their rest position. Amplitude is a measure of the wave's energy.
 - ⇒ The period of a longitudinal wave is the time it takes for one wavelength (one cycle) to pass a fixed point.
 - ⇒ The frequency is the number of wavelengths that passed a fixed point in one second.
 - ⇒ Sound waves, pressure waves are examples.

Transmission of Waves

 \Rightarrow When a wave is generated in a spring or a rope, the wave travels a distance of one wavelength, λ , along the rope in the time required for one complete vibration of the source (the period). We can use the formula for velocity to derive the wave equation:

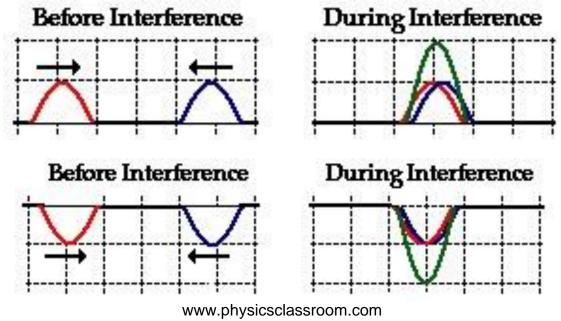
velocity,
$$v = \frac{\text{change in distance, } \Delta d}{\text{change in time, } \Delta t}$$
 and $\Delta d = \lambda$, and $\Delta t = T$ therefore $v = \frac{\lambda}{T}$ but $f = \frac{1}{T}$ Therefore $v = f\lambda$

 \Rightarrow The wave equation, $v = f\lambda$, applies to all waves, visible and invisible.

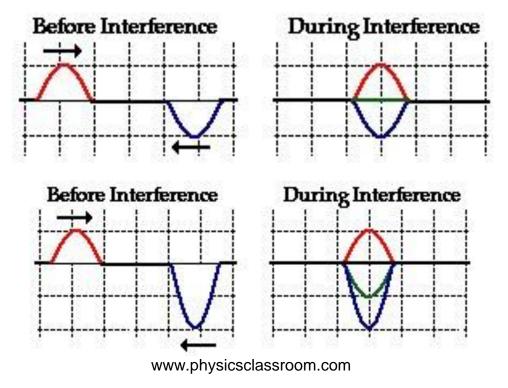
Examples

1. The wavelength of a water wave in a ripple tank is 0.080 m. If the frequency of the wave is 2.5 Hz, what is its speed?

- 2. The distance between successive crests in a series of water waves is 4.0 m, and the crests travel 9.0 m in 4.5
- s. What is the frequency of the waves?

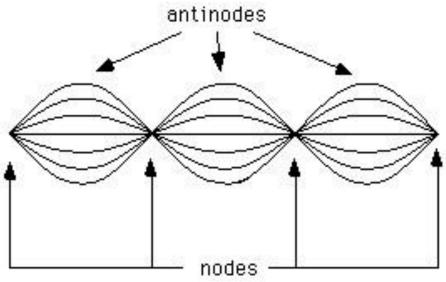

3. The period of a sound wave from a piano is 1.18×10^{-2} s. If the speed of the wave in air is 3.4×10^{2} m/s, what is its wavelength?

Transmission and Reflection


- Waves travel at uniform speed as long as the medium they are in does not change. (Note: If the tension changes, then that is a change in medium.)
- When waves propagate into a different medium, the frequency stays the same. The wave velocity changes.
- Thus, the wavelength must change as well. v is directly proportional to λ .

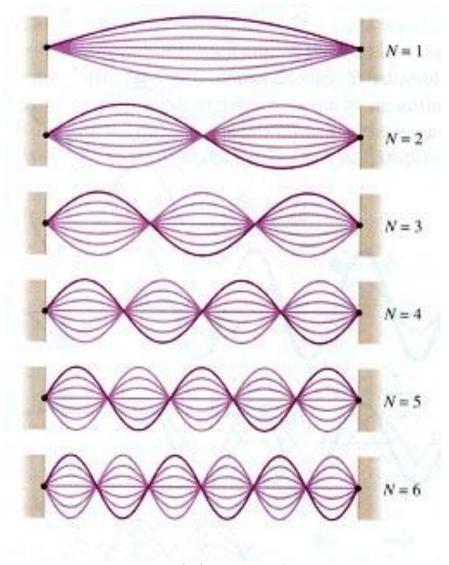
Transmission of Waves

- ⇒ Wave interference is when two or more waves act simultaneously on the same particles of a medium.
- ⇒ <u>Principle of Superposition</u>: The resultant displacement of a given particle is equal to the sum of the displacements that would have been produced by each wave acting independently.
- Constructive interference results when two of more waves interfere to produce a resultant displacement greater than the displacement caused by either wave itself.



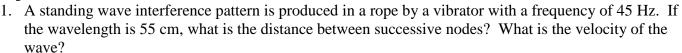
➤ Destructive Interference is when the resultant displacement is smaller than the displacement that would be caused by one wave by itself.

Standing Waves: Interference in One Dimension


- A standing wave interference pattern occurs if interfering waves have the same amplitude, wavelength, frequency, and are traveling in opposite directions.
 - Called a standing wave for short.

electron4.phys.utk.edu/ 141/dec1/December%201.htm

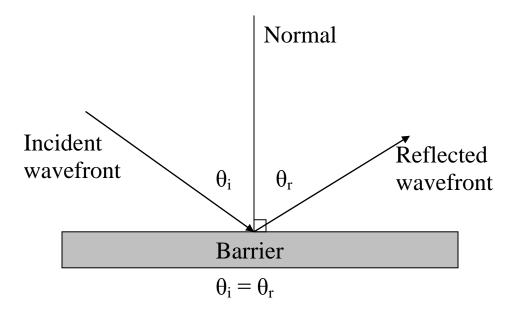
⇒ The <u>node</u>, or <u>nodal point</u>, is where crests and troughs of equal amplitude interfere destructively. For one-dimensional waves the fixed ends are nodal points.


- ⇒ The antinodes, or loops, are areas of constructive interference.
- ⇒ The number of nodal points for a given medium depends on the physical structure of that medium, thus only certain frequencies will produce a standing wave pattern. Such frequencies are resonance frequencies for that medium.
- \Rightarrow If one antinode were created with a certain frequency, say f_I , then to create two or three antinodes (etc.) the frequency would have to be $2f_I$, or $3f_I$ respectively. Note the decrease in amplitude as more antinodes are created.

sol.sci.uop.edu/.../ soundinterference.html

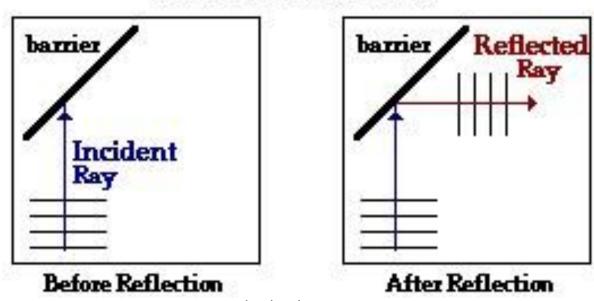
- \Rightarrow The distance between two successive nodes in a vibrating string is $\frac{1}{2}\lambda$.
- \Rightarrow The point of maximum displacement from a node is $\frac{1}{4}\lambda$.

Examples

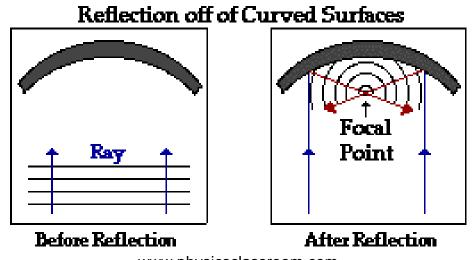


2. The distance between the first and sixth nodes in a standing wave is 75 cm. What is the wavelength of the waves? What is the velocity if the source has a frequency of 12 Hz?

3. A standing wave pattern is produced. It is observed to have 10 loops with a node at each end. The distance between the first and last node is 75.0 cm and the waves have a velocity of 6.25 m/s. What frequency is needed to observe four loops?


Reflection of Waves

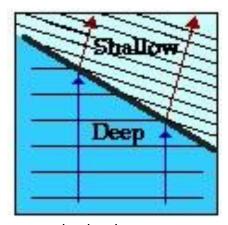
- ⇒ When waves strike a barrier they undergo reflection.
- ⇒ The direction of the reflected wave obeys the law of reflection: The angle of reflection is equal to the angle of incidence.


⇒ All parts of the waves are reflected → The reflected wave will have the same characteristics as the initial wave.

The Law of Reflection

www.physicsclassroom.com

• Consider a parabolic barrier: All the waves reflect and intersect at a common point, called the focal point.

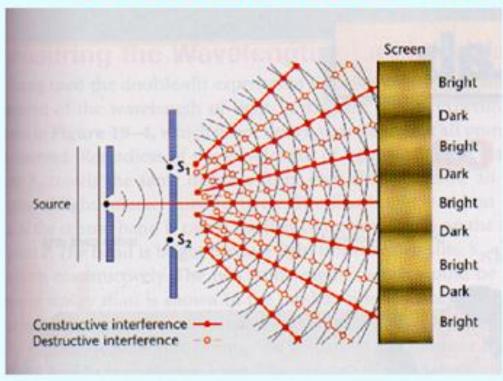


www.physicsclassroom.com

• This has many applications. One of which is a sound-collecting dish used by the military and media at sport games.

Refraction of Waves

- ⇒ Refraction is the change of direction of waves at the boundary between two different media.
- ⇒ Take, for example, deep waves traveling into shallow water:


www.physicsclassroom.com

- ⇒ It is like a pulse traveling from a fast to slow medium, but here the boundary is at an angle to the wave front.
 - Note that there will be reflected waves as well.

Diffraction and Interference of Waves

- When waves encounter a small hole in a barrier, they will not pass right through.
- They bend around the edges of the barrier and form circular waves. This is called diffraction.
- Diffraction can also occur around the edges of an obstacle in a wave's path.
 - ⇒ The smaller the wavelength in comparison to the size of the obstacle, the less the diffraction.
 - ⇒ Consider a doorway. Small sound wave-lengths will be less diffracted than longer sound wavelengths.
- Wave interference occurs when waves pass through two or more holes in a barrier. Nodes and antinodes form at regular intervals.

Interference of Waves

Constructive makes bright bands, destructive makes dark bands.

Where crest meets crest or trough meets trough, we have constructive interference. Crest plus trough cause destructive interference.

cougar.slvhs.slv.k12.ca.us