Physics 112 Formulae
Waves: Sound and Diffraction

| $\text { frequency }=\frac{\text { cycles }}{\text { time }}$ | $T=\frac{1}{f}$ |  | $f=\frac{1}{T}$ | period $=\frac{\text { time }}{\text { cycles }}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \qquad v=f \lambda \\ & \qquad v=\frac{\lambda}{T} \\ & v=\text { wave speed } \\ & \lambda=\text { wavelength } \\ & T=\text { period } \end{aligned}$ | Speed of Sound in air Diffraction: <br> $v_{\text {air }}=331+0.590 T_{\text {air }}$ $n \lambda=\frac{d W_{n}}{L}$ or $n \lambda=d t a n \theta$ <br> $\mathrm{~T}_{\text {air }}=$ temp in degrees Celsius $\mathrm{n}=$ maximum $\#$ <br> $\lambda=$ wavelength <br> $\mathrm{d}=$ separation of slits <br>  $\mathrm{W}_{\mathrm{n}}=$ Distance of maximum from <br> centre <br> $\mathrm{L}=$ Distance from screen <br>  $\theta=$ angle in degrees |  |  |  |
| Doppler Shift Approaching: $f_{o}=f_{s}\left(\frac{v+v_{o}}{v-v_{s}}\right)$ | Doppler Shift Receding: $f_{o}=f_{s}\left(\frac{v-v_{o}}{v+v_{s}}\right)$ |  | ler Shift Variables <br> bserved (heard) frequency ource frequency bserver's velocity elocity of the source eed of sound in medium. | Wave Speed in a String $\begin{aligned} v & =\sqrt{\frac{T}{\mu}} \\ \mathrm{~T} & =\text { Tension } \\ \mu & =\mathrm{kg} / \mathrm{m} \end{aligned}$ |

Refraction

| $n=\frac{c}{v}, n=\frac{\lambda_{v a c}}{\lambda_{\text {medium }}}$ | $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$ | $n_{1} \sin \theta_{c}=n_{2}$ |
| :--- | :--- | :--- |
| $\mathrm{n}_{1}=1^{\text {st }}$ medium | $n_{1}=n_{2} \sin \theta_{\max }$ |  |
| $\mathrm{n}_{2}=2^{\text {nd }}$ medium | $\theta \mathrm{c}=$ critical angle |  |
| $\mathrm{n}=$ index of refraction | $\theta_{1}=$ angle of incidence | $\theta$ max = maximum angle of |
| $\mathrm{c}=$ speed of light | $\theta_{2}=$ angle of refraction | refraction |
| $\mathrm{v}=$ slower speed of light |  |  |

Mirrors and Lenses
$\left.\begin{array}{|l|l|l|}\hline \frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f} & M=\frac{h_{i}}{h_{o}}, M=\frac{-d_{i}}{d_{o}} & \frac{1}{f}=\left(\frac{n_{\text {lens }}}{n_{o}}-1\right.\end{array}\right)\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)$

## Sign Convention

di \& f: + = real, - = virtual
M, hi, \& ho: + = upright, - = inverted Radii of a lens (as if light is hitting the outside of the lens): + = convex, - = concave

## Kinematics (Displacement \& Velocity)

## Displacement - Time Graph

Instantaneous Velocity = slope at a specific time
$V_{\text {avg }}=\frac{\text { disp }}{\text { time }}$
Speed $_{\text {avg }}=\frac{\text { dist }}{\text { time }}$
*The formulae above also apply to Velocity -
Time graphs.

## Velocity - Time Graph

Instantaneous Acceleration $=$ slope at a specific time
Displacement $=$ Top area - Bottom area
Distance $=$ Top area + Bottom area
*Areas refer to the area between the graph and the time axis. Use all positive numbers for area calculations

General Mathematical Relationships

| Circle |  | $\frac{\text { Pythagorean Thrm }}{h y p^{2}=a^{2}+b^{2}}$ | Trig <br> Cicumference $=2 \pi R$ |
| :---: | :---: | :---: | :---: |
| Area $=\pi R^{2}$ | $\underline{\text { Sphere }}$ | $\frac{\text { Quadratic Formula }}{}$ | $\sin =\frac{o p p}{h y p}$ |
| 1 revolution $=360^{\circ}$ | Area $=4 \pi R^{2}$ | $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ | $\cos =\frac{a d j}{h y p}$ |
| $\underline{\text { Triangle }}$ | Volume $=\frac{4}{3} \pi R^{3}$ | $\underline{\text { Slope }}$ |  |
| $A=\frac{1}{2}$ base $\times h e i g h t$ |  | $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ | tan $=\frac{o p p}{a d j}$ |

## Constants \& Other Useful Information

| Indices of Refraction |  |
| :--- | :--- |
| Substance | Index of <br> Refraction $(n)$ |
| Vacuum | 1.0000 |
| Air $\left(0^{\circ} \mathrm{C}, 101 \mathrm{kPa}\right)$ | 1.0003 |
| Water | 1.33 |
| Ethyl alcohol | 1.36 |
| Quartz (fused) | 1.46 |
| Glycerin | 1.47 |
| Lucite or Plexiglas | 1.51 |
| Glass (crown) | 1.52 |
| Sodium chloride | 1.53 |
| Glass (crystal) | 1.54 |
| Ruby | 1.54 |
| Glass (flint) | 1.65 |
| Zircon | 1.92 |
| Diamond | 2.42 |

Speed of Light in a vacuum:
$c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$\mathrm{n}=$ nano $=10^{-9}$
$\mathrm{m}=$ milli $=10^{-3}$
$\mu=$ micro $=10^{-6}$
$\mathrm{k}=$ kilo $=10^{3}$
$\mathrm{g}_{\text {Earth }}=9.81 \mathrm{~m} / \mathrm{s}^{2}$ (downwards)
$\mathrm{m} / \mathrm{s} \times 3.6 \Rightarrow \mathrm{~km} / \mathrm{h}$
$\mathrm{km} / \mathrm{h} \div 3.6 \Rightarrow \mathrm{~m} / \mathrm{s}$

## Types of Lenses



