Physics 112 Formulae

Waves: Sound and Diffraction

$$frequency = \frac{cycles}{time}$$

$$T = \frac{1}{f}$$

$$f = \frac{1}{T}$$

$$f = \frac{1}{T}$$
 $period = \frac{time}{cycles}$

$$v = f\lambda$$

$$v = \frac{\lambda}{T}$$

v = wave speed

 λ = wavelength T = period

 $v_{air} = 331 + 0.590T_{air}$ T_{air} = temp in degrees Celsius

Speed of Sound in air

Diffraction:

$$n\lambda = \frac{dW_n}{L}$$
 or $n\lambda = dtan\theta$

n = maximum #

 λ = wavelength

d = separation of slits

 W_n = Distance of maximum from

L = Distance from screen

 θ = angle in degrees

Doppler Shift

Approaching:

Receding:

$$f_o = f_s \left(\frac{v + v_o}{v - v_s} \right)$$

$$f_o = f_s \left(\frac{v - v_o}{v + v_s} \right)$$

Receding:

$$f_o = observed (heard) frequency f_s = source frequency f_s = source frequency f_s = velocity of the source f_s = velocit$$

Doppler Shift

$$f_o = f_s \left(\frac{v - v_o}{v + v_s} \right)$$

Doppler Shift Variables

 f_o = observed (heard) frequency

v = speed of sound in medium.

Wave Speed in a String

$$v = \sqrt{\frac{T}{\mu}}$$

T = Tension $\mu = kg/m$

Refraction

$$n = \frac{c}{v}, \quad n = \frac{\lambda_{vac}}{\lambda_{medium}} \qquad \begin{aligned} n_1 \sin \theta_1 &= n_2 \sin \theta_2 \\ n_1 &= 1^{\text{st}} \text{ medium} \\ n_2 &= 2^{\text{nd}} \text{ medium} \end{aligned}$$

n = index of refraction

c = speed of light

v = slower speed of light

 $n_2 = 2^{nd} \ medium$ θ_1 = angle of incidence

 θ_2 = angle of refraction

 $n_1 \sin \theta_c = n_2$

$$n_1 = n_2 \sin \theta_{\text{max}}$$

 $\theta c = critical angle$

 θ max= maximum angle of

refraction

$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$$

$$d_o = \text{object distance}$$

$$d_i = \text{image distance}$$

$$f = \text{focal length}$$

$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$$

$$\frac{1}{d_o} = \text{object distance distance distance for surrounding medium } h_o = \frac{h_i}{h_o}, \quad M = \frac{-d_i}{d_o}$$

$$\frac{1}{f} = \left(\frac{n_{lens}}{n_o} - 1\right) \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

$$\frac{1}{f} = \left(\frac{n_{lens}}{n_o} - 1\right)$$

$$\frac$$

M = magnification

$$\frac{1}{f} = \left(\frac{n_{lens}}{n_o} - 1\right) \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

 $| n_o = index for surrounding medium$ R_1 , R_2 = Radii of curvature

Sign Convention

$$\mathbf{di} \ \& \ \mathbf{f} : += \text{real}, -= \text{virtual}$$

M, **hi**, & **ho**: + = upright, - = inverted

Radii of a lens (as if light is hitting the outside of the lens): + = convex, - = concave

Kinematics (Displacement & Velocity)

Displacement – Time Graph

Instantaneous Velocity = slope at a specific time

$$V_{avg} = \frac{disp}{time}$$

$$Speed_{avg} = \frac{dist}{time}$$

*The formulae above also apply to Velocity – Time graphs.

Velocity - Time Graph

Instantaneous Acceleration = slope at a specific time

Displacement = Top area - Bottom area

Distance = Top area + Bottom area

*Areas refer to the area between the graph and the time axis. Use all positive numbers for area calculations

General Mathematical Relationships

<u>Circle</u>		$\frac{\text{Pythagorean Thrm}}{hyp^2 = a^2 + b^2}$	Trig
Cicumference = $2\pi R$ Area = πR^2	<u>Sphere</u>	Quadratic Formula	$\sin = \frac{opp}{hyp}$
1 revolution $= 360^{\circ}$	$Area = 4\pi R^2$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$\cos = \frac{adj}{hyp}$
I	$Volume = \frac{4}{3}\pi R^3$	$\frac{\text{Slope}}{m = \frac{y_2 - y_1}{y_2 - y_1}}$	$tan = \frac{opp}{c}$
$A = \frac{1}{2}base \times height$		$m = \frac{1}{x_2 - x_1}$	adj

Constants & Other Useful Information

Indices of Refraction		Speed of Lig $c = 3.00 \times$
Substance	Index of Refraction (n)	
Vacuum	1.0000	n = nano =10 m = milli =
Air (0°C, 101 kPa)	1.0003	m = milii = $\mu = micro = $
Water	1.33	k = kilo = 10
Ethyl alcohol	1.36	$g_{Earth} = 9.81$
Quartz (fused)	1.46	$m/s \times 3.6 \Rightarrow$
Glycerin	1.47	km/h ÷ 3.6 ^c
Lucite or Plexiglas	1.51	
Glass (crown)	1.52	
odium chloride	1.53	
Glass (crystal)	1.54	
Luby	1.54	
Glass (flint)	1.65	
Zircon	1.92	
Diamond	2.42	

Types of Lenses

