\qquad

Review for Grade 9 Math Exam on Unit 5 - Polynomials

\qquad

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. A large white square represents an x^{2}-tile, a black rectangle represents a $-x$-tile, and a small white square represents a 1 -tile.

Write the polynomial represented by this set of algebra tiles.

a. $-2 x^{2}+3 x+4$
b. $2 x^{2}-3 x+4$
c. $2 x^{2}-x^{3}+4$
d. $2 x-3 x^{2}+4$
2. A large white square represents an x^{2}-tile, a large black square represents a $-x^{2}$-tile, a small white square represents a 1 -tile, and a small black square represents a -1 -tile.

How would you model the polynomial $-3 x^{2}-4$ with algebra tiles?
a.

c.

b.

d.

3. Which of the following expressions are polynomials?
i) $\frac{1}{2} x$
ii) $1-5.5 n^{2}$
iii) $2 \sqrt{t}$
iv) 3.5
a. i, iii, and iv
b. ii and iv
c. i, ii, and iii
d. i, ii, and iv
4. Identify the polynomials that can be represented by the same set of algebra tiles.
i) $2 x^{2}-5+6 x$
ii) $2 x^{2}-6 x+5$
iii) $-5+6 x-2 x^{2}$
iv) $6 x-5+2 x^{2}$
a. i and iv
b. iii and iv
c. ii and iv
d. i and ii
5. Identify the polynomial that is equivalent to $4-6 v-7 v^{2}$.
i) $7 v^{2}+6 v-4$
ii) $4+7 v^{2}-6 v$
iii) $-7 v^{2}-6 v+4$
iv) $-7 v^{2}-4+6 v$
a. iv
b. ii
c. i
d. iii
\qquad 6. Combine like terms. Sketch algebra tiles if it helps.
$3 x+10+7 x-4$
a. $\quad 13 x+3$
b. $10 x+6$
c. $16 x$
d. $10 x-6$
\qquad 7. Combine like terms. Sketch algebra tiles if it helps.

$$
9 x^{2}-7 x+2 x-6 x^{2}
$$

a. $-2 x^{2}$
b. $3 x^{2}-5 x$
c. $2 x^{2}-4 x$
d. $3 x^{2}+5 x$
\qquad 8. Simplify: $10 x^{2}-8+3 x+5-6 x^{2}-6 x$
a. $4 x^{2}-3 x+3$
b. $4 x^{2}-3 x-3$
c. $4 x^{2}+3 x+3$
d. $4 x^{4}-3 x^{2}-3$
\qquad 9. Add: $\left(2 x^{2}-6\right)+\left(5 x^{2}-8 x-4\right)$
a. $10 x^{2}-8 x-24$
b. $7 x^{2}-14 x-4$
c. $7 x^{2}-8 x-10$
d. $7 x^{2}-8 x+10$
10. Add: $\left(-3 x^{2}+3-5 x\right)+\left(5+x^{2}+8 x\right)$
a. $-2 x^{2}+3 x+8$
b. $-2 x^{2}-3 x+8$
c. $-4 x^{2}-3 x+8$
d. $-4 x^{2}+3 x+8$
11. Subtract: $\left(3 x-7 x^{2}+2\right)-\left(4 x^{2}-5+6 x\right)$
a. $-11 x^{2}+3 x-7$
b. $-11 x^{2}-9 x-3$
c. $-11 x^{2}-3 x+7$
d. $11 x^{2}+3 x-7$
12. Subtract: $\left(3 y^{2}-5 x^{2}+4\right)-\left(2 x-8+4 y^{2}\right)$
a. $-1 y^{2}-5 x^{2}-2 x-4$
b. $3 y^{2}-7 x^{2}+12$
c. $-4 x+12$
d. $-1 y^{2}-5 x^{2}-2 x+12$
13. Multiply: $7\left(2 x^{2}-5 x\right)$
a. $14 x^{2}-5 x$
b. $14 x^{2}+2 x$
c. $14 x^{2}-35 x$
d. $9 x^{2}-2 x$
14. Multiply: $(-2)\left(4 c^{2}-6 c-7\right)$
a. $-8 c^{2}-12 c-14$
b. $2 c^{2}-8 c-9$
c. $-8 c^{2}+12 c+14$
d. $-8 c^{2}-6 c-7$
15. Divide: $\frac{20 p-28}{4}$
a. $5 p-28$
b. $5 p-7$
c. $20 p-24$
d. $16 p-24$
16. Divide: $\frac{-20 p^{2}-16 p}{-4 p}$
a. $5 p^{2}-16 p$
b. $5 p+4$
c. $80 p^{2}-64$
d. $5 p+4 p$

Short Answer

17. A large white square represents an x^{2}-tile, a large black square represents a $-x^{2}$-tile, a white rectangle represents an x-tile, a black rectangle represents a $-x$-tile, a small white square represents a 1 -tile, and a small black square represents a -1-tile.

Write the simplified polynomial.

18. Combine like terms. Sketch algebra tiles if it helps.
$3 x^{2}-6 x+4 x^{2}+3 x-6$
19. Add: $\left(10 x^{2}-7 x+6\right)+\left(-2 x^{2}+2 x-9\right)$
20. Write the perimeter of this rectangle as a polynomial in simplest form.

21. Subtract: $\left(9 x^{2}-6 x+4\right)-\left(5 x^{2}-4 x-5\right)$
22. Subtract: $\left(4 x^{2}+9 x-3\right)-\left(x^{2}-11 x+5\right)$
23. Multiply: $5\left(-2 x^{2}-5\right)$
24. Multiply: $-2\left(-8+2 x-5 x^{2}\right)$
25. Divide: $\frac{12 m-20 m^{2}}{-4 m}$
26. Determine the product: $(-2 x)(4 x+3 y-5 z)$
27. Determine the quotient: $\left(-10 x^{2}+4 x y-6 x z\right) \div(-2 x)$

Problem

28. a) Write the multiplication sentence modelled by this rectangle.
b) Determine the area of the rectangle when $x=12$.

Show your work.

29. The area of a rectangular deck, in square metres, is given by the polynomial $40 p^{2}+24 p$. The deck is $8 p$ metres wide.
a) Write a polynomial to represent the length of the deck.
b) Determine the length, width, and area of the deck when $p=4 \mathrm{~m}$.
30. a) Determine a polynomial for the perimeter of the shape below.
b) Determine a polynomial for the area of the shape below.
c) Determine the perimeter and area when $x=6 \mathrm{~cm}$.

Review for Grade 9 Math Exam on Unit 5 - Polynomials Answer Section

MULTIPLE CHOICE

15. ANS: B PTS: 1 DIF: Moderate

REF: 5.5 Multiplying and Dividing a Polynomial by a Constant
LOC: 9.PR7 TOP: Patterns and Relations (Variables and Equations)
KEY: Procedural Knowledge
16. ANS: B PTS: 1 DIF: Moderate

REF: 5.6 Multiplying and Dividing a Polynomial by a Monomial
LOC: 9.PR7 TOP: Patterns and Relations (Variables and Equations)
KEY: Procedural Knowledge

SHORT ANSWER

17. ANS:
$2 x^{2}-x+2$
PTS: 1 DIF: Moderate REF: 5.2 Like Terms and Unlike Terms
LOC: 9.PR5 TOP: Patterns and Relations (Variables and Equations)
KEY: Procedural Knowledge
18. ANS:
$7 x^{2}-3 x-6$
PTS: 1 DIF: Moderate REF: 5.2 Like Terms and Unlike Terms
LOC: 9.PR5 TOP: Patterns and Relations (Variables and Equations)
KEY: Procedural Knowledge
19. ANS:
$8 x^{2}-5 x-3$
PTS: 1 DIF: Moderate REF: 5.3 Adding Polynomials
LOC: 9.PR6 TOP: Patterns and Relations (Variables and Equations)
KEY: Procedural Knowledge
20. ANS:
$16 x+30$
PTS: 1 DIF: Moderate REF: 5.3 Adding Polynomials
LOC: 9.PR6 TOP: Patterns and Relations (Variables and Equations)
KEY: Procedural Knowledge
21. ANS:
$4 x^{2}-2 x+9$
PTS: 1 DIF: Moderate REF: 5.4 Subtracting Polynomials
LOC: 9.PR6 TOP: Patterns and Relations (Variables and Equations)
KEY: Procedural Knowledge
22. ANS:
$3 x^{2}+20 x-8$
PTS: 1 DIF: Difficult REF: 5.4 Subtracting Polynomials
LOC: 9.PR6 TOP: Patterns and Relations (Variables and Equations)
KEY: Procedural Knowledge
23. ANS:
$-10 x^{2}-25$
PTS: 1 DIF: Moderate REF: 5.5 Multiplying and Dividing a Polynomial by a Constant
LOC: 9.PR7 TOP: Patterns and Relations (Variables and Equations)
KEY: Procedural Knowledge
24. ANS:
$16-4 x+10 x^{2}$
PTS: 1 DIF: Moderate REF: 5.5 Multiplying and Dividing a Polynomial by a Constant
LOC: 9.PR7 TOP: Patterns and Relations (Variables and Equations)
KEY: Procedural Knowledge
25. ANS:
$-3+5 m$

PTS: 1 DIF: Moderate
REF: 5.6 Multiplying and Dividing a Polynomial by a Monomial
LOC: 9.PR7 TOP: Patterns and Relations (Variables and Equations)
KEY: Procedural Knowledge
26. ANS:
$-8 x^{2}-6 x y+10 x z$

PTS: 1 DIF: Difficult
REF: 5.6 Multiplying and Dividing a Polynomial by a Monomial
LOC: 9.PR7 TOP: Patterns and Relations (Variables and Equations)
KEY: Procedural Knowledge
27. ANS:
$5 x-2 y+3 z$

PTS: 1
DIF: Difficult
REF: 5.6 Multiplying and Dividing a Polynomial by a Monomial
LOC: 9.PR7 TOP: Patterns and Relations (Variables and Equations)
KEY: Procedural Knowledge

PROBLEM

28. ANS:
a) $5(4(x+3))$
$=5(4 x+12)$
$=20 x+60$
b) Substitute $x=12$ into $20 x+60$.
$20(12)+60=300$
The area of the rectangle when $x=12$ is 300 square units.
PTS: 1 DIF: Moderate REF: 5.5 Multiplying and Dividing a Polynomial by a Constant
LOC: 9.PR7 TOP: Patterns and Relations (Variables and Equations)
KEY: Problem-Solving Skills | Communication
29. ANS:
a) Length of deck $=\left(40 p^{2}+24 p\right) \div 8 p$

$$
\begin{aligned}
& =\frac{40 p^{2}}{8 p}+\frac{24 p}{8 p} \\
& =5 p+3
\end{aligned}
$$

b) Length:

Substitute $p=4$ into $5 p+3$.
$5 p+3$
$=5(4)+3$
$=23$
The length of the deck is 23 m .
Width:
Substitute $p=4$ into $8 p$.
$8 p$
$=8(4)$
$=32$
The width of the deck is 32 m .
Area:

$$
\begin{aligned}
A & =l \times w \\
& =23 \times 32 \\
& =736
\end{aligned}
$$

The area of the deck is $736 \mathrm{~m}^{2}$.
PTS: 1 DIF: Difficult
REF: 5.6 Multiplying and Dividing a Polynomial by a Monomial
LOC: 9.PR7 TOP: Patterns and Relations (Variables and Equations)
KEY: Problem-Solving Skills | Communication
30. ANS:
a) Perimeter $=3 x+3 x+(4 x+5)+3 x+(4 x+5)+3 x+3 x+3 x$

$$
=26 x+10
$$

b) \quad Area $=3 x(3 x)+3 x(3 x+4 x+5)$

$$
\begin{aligned}
& =9 x^{2}+9 x^{2}+12 x^{2}+15 x \\
& =30 x^{2}+15 x
\end{aligned}
$$

c) Perimeter:

Substitute $x=6$ into $26 x+10$.
$26 x+10$
$=26(6)+10$
$=166$
The perimeter of the shape is 166 cm .

Area:
Substitute $x=6$ into $30 x^{2}+15 x$.
$30 x^{2}+15 x$
$=30(6)^{2}+15(6)$
$=1170$
The area of the shape is $1170 \mathrm{~cm}^{2}$.
PTS: 1 DIF: Difficult
REF: 5.6 Multiplying and Dividing a Polynomial by a Monomial
LOC: 9.PR7 TOP: Patterns and Relations (Variables and Equations)
KEY: Problem-Solving Skills | Communication

