

Section 8.2

Properties of Chords in Circles

Investigate:

You will need a cut-out of a circle, a protractor and a ruler.

1. Choose 2 points on the circumference of your circle. Label them as A and B , and then connect them with a line segment. Make sure AB does NOT go through the centre of the circle!
2. Fold the circle so that A touches B. Crease the fold, open, and draw a line along the fold. Mark the point C where the fold line intersects $A B$.

3. What do you notice about the angles at C?

What do you notice about the line segments AC and CB?
4. Repeat the steps above for 2 other points, D and E.

- A line segment that joins two points on a circle is a chord.
- A diameter of a circle is a chord through the
 centre of the circle.

Perpendicular to a Chord Property 1

- A line drawn from the centre of a circle that is perpendicular to a chord bisects the chord. (It cuts the chord into two equal parts.)
$\angle \mathrm{OCA}=\angle \mathrm{OCB}=90^{\circ}$
$\mathrm{AC}=\mathrm{CB}$

Perpendicular to a Chord Property 2

- The perpendicular bisector of a chord in a circle passes through the centre of the circle.

When $\angle \mathrm{SPR}=\angle \mathrm{SPQ}=90^{\circ}$ and RP $=\mathrm{PQ}$, then SP passes through the centre.

Perpendicular to a Chord Property 3

- A line that joins the centre of a circle and the midpoint of a chord is perpendicular to the chord.

When O is the centre and
$\mathrm{EP}=\mathrm{PF}$, then
$\angle \mathrm{OGE}=\angle \mathrm{OGF}=90^{\circ}$.

Determining the Measure of Angles in a Triangle

 Example \#1. Determine the values of x° and y°.

Therefore, $\mathrm{y}^{\mathrm{o}}=57^{\circ}$
To find angle x :
We know the radii are equal, so $\triangle \mathrm{AOB}$ is isosceles.
Then, $\angle \mathrm{OBA}=\angle \mathrm{OAB}$
Therefore, $x^{\circ}=33^{\circ}$ I

Using the Pythagorean Theorem in a Circle Example \#2. What is the length of chord CD, to the nearest tenth?

Solving Problems Using the Property of a Chord and its Perpendicular
Example \#3. Determine the length of CD.

$$
\begin{aligned}
& O D=\text { Radius }=20 \mathrm{~cm} \\
& C D=O D-O C
\end{aligned}
$$

Find $O C$, called x

$$
\begin{aligned}
& x^{2}=20^{2}-12^{2} \\
& x^{2}=400-144 \\
& x^{2}=256 \\
& x=\sqrt{256} \\
& x=16 \mathrm{~cm} \\
& C D=20-16 \\
& =4 \mathrm{~cm}
\end{aligned}
$$

Homework:

$$
\begin{aligned}
& \text { P. } 397-398 \\
& \# 4,5,6,10
\end{aligned}
$$

a)

Find EC the subtract ES!

$$
\begin{array}{rlrl}
E_{0} & =5.5^{2}+3^{2} & & =\sqrt{121-25} \\
& =\sqrt{30.25+9} & & =9.7 \\
& =6.3 & & =9 \\
& S=9.7-6.3 & =3.4
\end{array}
$$

