\qquad
\qquad
\qquad

Math 9: Unit 8 Review

Short Answer

1. O is the centre of this circle and point A is a point of tangency.

Determine the value of b. If necessary, give your answer to the nearest tenth.

2. O is the centre of this circle and point T is a point of tangency.

Determine the value of n. If necessary, give your answer to the nearest tenth.

3. O is the centre of the circle.

Determine the value of v°.

4. O is the centre of the circle.

Determine the value of a°.

5. O is the centre of the circle.

Determine the value of z to the nearest tenth, if necessary.

6. O is the centre of the circle.

Determine the value of s to the nearest tenth, if necessary.

7. O is the centre of this circle. Determine the value of x°.

8. O is the centre of this circle.

Determine the value of m°.

9. O is the centre of this circle.

Determine the value of a°.

10. O is the centre of this circle.

Determine the value of v°.

11. O is the centre of this circle.

Determine the value of z°.

12. O is the centre of this circle.

Determine the value of g°.

13. Point O is the centre of this circle.

Determine the values of x° and y°.

14. Point O is the centre of this circle. Determine the values of y° and z°.

15. Point O is the centre of the circle.

Determine the values of a° and c°.

16. Point O is the centre of the circle.

Determine the values of y° and z°.

17. Point O is the centre of this circle.

Determine the value of m to the nearest tenth, if necessary.

18. Point O is the centre of this circle.

Determine the value of a to the nearest whole number.

Problem

19. A Ruppell's Griffon Vulture holds the record for the bird with the highest documented flight altitude. It was spotted at a height of about 11 km above the Earth's surface. The radius of Earth is approximately 6400 km . How far was the vulture from the horizon, H ? Calculate this distance to the nearest kilometre.

20. AQ is a tangent to the circle with centre B and to the circle with centre C .
The points of tangency are P and Q .
Determine the value of y to the nearest tenth.

21. A pedestrian underpass is constructed using a cylindrical pipe of radius 2.6 m . The bottom of the pipe will be filled and paved. The headroom at the centre of the path is 3.9 m .
How wide is the path to the nearest tenth of a metre?

Math 9: Unit 8 Review

Answer Section

SHORT ANSWER

1. ANS:
36.5

PTS: 1 DIF: Easy REF: 8.1 Properties of Tangents to a Circle
LOC: 9.SS1
TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
2. ANS:
62.3

PTS: 1
LOC: 9.SS1
3. ANS:
53°

PTS: 1
DIF: Easy REF: 8.2 Properties of Chords in a Circle
LOC: 9.SS1
DIF: Moderate REF: 8.1 Properties of Tangents to a Circle
TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
4. ANS:
38°

PTS: 1
DIF: Easy REF: 8.2 Properties of Chords in a Circle
LOC: 9.SS1
TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
5. ANS:

16

PTS: 1
DIF: Easy REF: 8.2 Properties of Chords in a Circle
LOC: 9.SS1
6. ANS:
3.3

PTS: 1
DIF: Moderate REF: 8.2 Properties of Chords in a Circle
LOC: 9.SS1
TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
7. ANS:
43°

PTS: 1
DIF: Easy REF: 8.3 Properties of Angles in a Circle
LOC: 9.SS1
TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
8. ANS:
50°

PTS: 1
DIF: Easy REF: 8.3 Properties of Angles in a Circle
LOC: 9.SS1
9. ANS:
51°
PTS: 1
LOC: 9.SS1
10. ANS:
54°
PTS: 1
LOC: 9.SS1
11. ANS:
70°
PTS: 1
DIF: Moderate REF: 8.3 Properties of Angles in a Circle
LOC: 9.SS1
12. ANS:
118°
PTS: 1
LOC: 9.SS1
13. ANS:
$x^{\circ}=62^{\circ}, y^{\circ}=28^{\circ}$
PTS: 1
LOC: 9.SS1
14. ANS:
$y^{\circ}=75^{\circ}, z^{\circ}=150^{\circ}$
PTS: 1 DIF: Easy REF: 8.3 Properties of Angles in a Circle
LOC: 9.SS1
TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
15. ANS:
$a^{\circ}=44^{\circ}, c^{\circ}=46^{\circ}$
PTS: 1
DIF: Moderate REF: 8.3 Properties of Angles in a Circle
LOC: 9.SS1
16. ANS:
$y^{\circ}=38^{\circ}, z^{\circ}=52^{\circ}$
PTS: 1
DIF: Moderate REF: 8.3 Properties of Angles in a Circle
LOC: 9.SS1
17. ANS:
$m=19.5$
PTS: 1 DIF: Moderate REF: 8.2 Properties of Chords in a Circle
LOC: 9.SS1

DIF: Moderate REF: 8.3 Properties of Angles in a Circle TOP: Shape and Space (Measurement) KEY: Conceptual Understanding

DIF: Moderate REF: 8.3 Properties of Angles in a Circle
TOP: Shape and Space (Measurement) KEY: Conceptual Understanding

DIF: Moderate REF: 8.3 Properties of Angles in a Circle

DIF: Easy REF: 8.2 Properties of Chords in a Circle
TOP: Shape and Space (Measurement) KEY: Conceptual Understanding

TOP: Shape and Space (Measurement) KEY: Conceptual Understanding
18. ANS:
$a=3$
PTS: 1
LOC: 9.SS1
DIF: Moderate REF: 8.2 Properties of Chords in a Circle TOP: Shape and Space (Measurement) KEY: Conceptual Understanding

PROBLEM

19. ANS:
$\mathrm{OV}=11 \mathrm{~km}+6400 \mathrm{~km}$

$$
=6411 \mathrm{~km}
$$

$\mathrm{OH}=6400 \mathrm{~km}$
Use the Pythagorean Theorem in $\triangle \mathrm{OHV}$ to solve for HV.
$\mathrm{HV}^{2}=\mathrm{OV}^{2}-\mathrm{OH}^{2}$
$\mathrm{HV}^{2}=6411^{2}-6400^{2}$

$\mathrm{HV}^{2}=140921$
$\mathrm{HV}=\sqrt{140921}$
HV $\doteq 375.3944 \ldots$
The vulture was about 375 kilometres from the horizon.

PTS: 1
DIF: Moderate REF: 8.1 Properties of Tangents to a Circle
LOC: 9.SS1
TOP: Shape and Space (Measurement) KEY: Problem-Solving Skills
20. ANS:

Use the Pythagorean Theorem in $\triangle \mathrm{ABP}$ to solve for AP.

$$
\mathrm{AP}^{2}=15^{2}-5^{2}
$$

$$
\begin{aligned}
& \mathrm{AP}=\sqrt{15^{2}-5^{2}} \\
& \mathrm{AP} \doteq 14.1421 \ldots
\end{aligned}
$$

$\triangle \mathrm{ABP} \cong \triangle \mathrm{ACQ}$
Consider $\triangle \mathrm{ACQ}$ as an enlargement of $\triangle \mathrm{ABP}$.
The scale ratio is:

$$
\begin{aligned}
\frac{\mathrm{CQ}}{\mathrm{BP}} & =\frac{10}{5} \\
& =2
\end{aligned}
$$

$$
\begin{aligned}
& \text { So, } \mathrm{AQ}=2(\mathrm{AP}) \\
& \text { Then, } \\
& \begin{array}{l}
y=\mathrm{AQ}-\mathrm{AP} \\
=2(\mathrm{AP})-\mathrm{AP} \\
=\mathrm{AP}
\end{array}
\end{aligned}
$$

So, $y \doteq 14.1$
PTS: 1 DIF: Difficult REF: 8.1 Properties of Tangents to a Circle
LOC: 9.SS1
TOP: Shape and Space (Measurement) KEY: Problem-Solving Skills
21. ANS:

Draw a radius from the centre of the pipe, O , to an edge of the path, E .
Label the midpoint of the path F.
OE is a radius, so: $\mathrm{OE}=2.6 \mathrm{~m}$
$\mathrm{OF}=3.9 \mathrm{~m}-2.6 \mathrm{~m}$
$=1.3 \mathrm{~m}$
Use the Pythagorean Theorem in $\triangle \mathrm{OEF}$ to
solve for EF .

$\mathrm{EF}^{2}+1.3^{2}=2.6^{2}$

$$
\begin{aligned}
\mathrm{EF}^{2} & =2.6^{2}-1.3^{2} \\
\mathrm{EF}^{2} & =5.07 \\
\mathrm{EF} & =\sqrt{5.07} \\
\mathrm{EF} & =2.2516 \ldots
\end{aligned}
$$

The width of the path is twice the length of EF .
$2(2.2516 \ldots)=4.5033 \ldots$
So, the width of the path is about 4.5 m .

PTS: 1
LOC: 9.SS1

DIF: Difficult REF: 8.2 Properties of Chords in a Circle
TOP: Shape and Space (Measurement) KEY: Problem-Solving Skills

