- 1. A 62 kg crate is pulled at a constant velocity with an applied force of 337 N.
- a. Calculate the force of friction.
- b. Calculate the normal force on the crate.
- c. Calculate the coefficient of kinetic friction.

a)
$$F_f = \mu F_N$$
 $F_a = 337 N$
 $F_{net} = F_f + F_a$ $F_{net} = 0 N$
 $0 = F_f + 337$
 $-337N = F_e$
b) $F_N = F_g = mg$ $F_N = (62Kg)(9.8Im/s^2)$
 $F_F = \mu F_N$

c)
$$F_4 = \mu F_N = use magnifudes$$

337 = $\mu(608)$ (+ numbers)

$$\frac{337}{608} = \mu$$
 $0.55 = \mu$

- 2. A box has a weight of 625 N and is being pulled with a net force of 12 N. The coefficient of kinetic friction is 0.23.
- a. What is the mass of the sted?
- b. What is the force of friction?
- c. What is the applied force?
- a) Weight = $F_g = mg$ $625N = m(9.81 m/s^2)$ $\frac{625N}{9.81m/s^2} = m \rightarrow 63.7 kg = m$
 - b) $F_{netx} = F_f + F_a$ $F_f = \mu F_N \otimes F_N = F_g$ $F_f = (0.23)(625N) = (144N)$
 - () Fa=?Fretx = $F_{4}+F_{a}$ Frequency

 12 N = -144N + Fa (opposite direction direction)