1. A 62 kg crate is pulled at a constant velocity with an applied force of 337 N .
a. Calculate the force of friction.
b. Calculate the normal force on the crate.
c. Calculate the coefficient of kinetic friction.
a)

$$
\begin{aligned}
& F_{f}=\mu F_{N} \\
& F_{a}=337 \mathrm{~N} \\
& F_{\text {net }}=F_{f}+F_{a} \\
& F_{\text {metre }}=O N \\
& 0=F_{f}+337 \\
& -337 N=F_{f} \\
& \text { b) } F_{N}=F_{g}=m g \leftarrow \\
& F_{f}=\mu F_{N} \\
& F_{N}=(62 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& F_{N}=608 \mathrm{~N}
\end{aligned}
$$

C) $F_{f}=\mu F_{N} \leftarrow$ use magnitudes

$$
\begin{aligned}
& 337=\mu(608) \quad(t \text { numbers }) \\
& \frac{337}{608}=\mu \\
& 0.55=\mu
\end{aligned}
$$

2. A box has a weight of 625 N and is being pulled with a net force of 12 N . The coefficient of kinetic friction is 0.23 .
a. What is the mass of the
b. What is the force of friction?
c. What is the applied force?
a)

$$
\begin{aligned}
& \text { Weight }=F_{g}=m g \\
& 625 \mathrm{~N}=m\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& \frac{625 \mathrm{~N}}{9.81 \mathrm{~m} / \mathrm{s}^{2}}=m \rightarrow 63.7 \mathrm{~kg}=\mathrm{m}
\end{aligned}
$$

b)

$$
\begin{aligned}
& F_{\text {net }}=F_{f}+F_{a} \\
& F_{f}=\mu F_{N} \otimes F_{N}=F_{g} \\
& F_{f}=(0.23)(625 \mathrm{~N})=144 \mathrm{~N}
\end{aligned}
$$

c) $F_{a}=$?
$F_{\text {nets }}=F_{f}+F_{a} \quad F_{f}$ always negative!
$12 N=-144 N+F_{a}$ (opposite direction)

$$
156 \mathrm{~N}=\mathrm{Fa}_{a}
$$

