SoluTions \rightarrow Maximum Height \& Maximum Area
1.

$$
\begin{aligned}
& \text { 1. } h(t)=-5 t^{2}+50 t \\
& \rightarrow y=-5 t^{2}+50 t
\end{aligned}
$$

To find the maximum height you need to "complete the square and determine the "y" value of the vertex.

$$
\begin{aligned}
& y=-5\left(t^{2}-10 t\right) \\
& y-125=-5\left(t^{2}-10 t+25\right)
\end{aligned}
$$

$$
\begin{array}{ll}
y-125=-5(t-5)^{2} & \text { Therefore, the } \\
y=-5(t-5)^{2}+125 & \text { maximum height }
\end{array}
$$

$$
y=-5(t-5)^{2}+125 \quad \begin{aligned}
& \text { maximum height } \\
& \text { of the soccer }
\end{aligned}
$$

Vertex $(5,125)$ of the soccer

Time Maximum Height
2. $h=-7 t^{2}+42 t$

ᄂ $y=-7 t^{2}+42 t$
To find out how many seconds it takes to reach the maximum height, you need to "complete the square" and determine the " x " value of the vertex.

$$
\begin{gathered}
y=-7\left(t^{2}-6 t\right) \\
y-63=-7\left(t^{2}-6 t+9\right) \\
y-63=-7(t-3)^{2} \\
y=-7(t-3)^{2}+63
\end{gathered}
$$

Therefore, it took the golf ball 3 seconds

Vertex $(3,63)$
Time Maximum Height
to reach the maximum height. (A)
3. $h(t)=-2 t^{2}+20 t$
L) $y=-2 t^{2}+20 t$

When the rocket hits the ground, it has a height of zero $(y=0)$
$\rightarrow O=-2 t^{2}+20 t$
If we factor:

$$
0=-2 t(t-10)
$$

Either $-2 t=0$ or

Alternate
Methods:

1) Substitute answers into equation and see which one "works".
2) Use Graphing Calculator to find the "zero" ($2^{\text {nd }}$ Trace, \#2)
$t=0$ when the rocket is launched, therefore $t=10$ when it returns to the ground. (D)

4

$$
h=-3 t^{2}+24 t+1
$$

To determine how high the rocket is after 2 seconds, substitute $(t=2)$ into the equation and solve.

$$
\begin{aligned}
& h=-3(2)^{2}+24(2)+1 \\
& h=-3(4)+48+1 \\
& h=-12+49 \\
& h=37
\end{aligned}
$$

Therefore, the rocket is 37 m high after 2 seconds.
5.

$$
h=-3 t^{2}+24 t+5
$$

The ball is kicked from the balcony at time zero ($t=0$).

Therefore, by substituting $t=0$ into the equation we can determine the initial height of the ball (= the height of the balcony)

$$
\begin{aligned}
& h=-3(0)^{2}+24(0)+5 \\
& h=0+0+5 \\
& h=5 m
\end{aligned}
$$

Therefore, the balcony is 5 m off of the ground

$$
400 \mathrm{~m} \text { of fencing } \Rightarrow \text { Perimeter }=4,00
$$

$$
\begin{aligned}
& \text { Let } x=\text { width } \\
& \text { Then } 400-2 x=\text { length } \\
& \begin{aligned}
\text { Area } & =l \times w \\
& =(400-2 x)(x) \quad(c)
\end{aligned}
\end{aligned}
$$

800 m of fencing \Rightarrow Perimeter $=800$
Then $\frac{800-2 x}{2}=$ length

$$
400-x=\text { length }
$$

$$
\begin{aligned}
\text { Area } & =\ell \times w \\
& =(400-x)(x)(B)
\end{aligned}
$$

 900 m of fencing \Rightarrow Perimeter $=900$
Let $x=$ Width
Then $900-3 x=$ length

$$
\begin{aligned}
\text { Area } & =l \times w \\
A & =(900-3 x)(x) \\
\text { or } y & =(900-3 x)(x)
\end{aligned}
$$

To determine the maximum area, you need to "complete the square".

$$
\begin{aligned}
& \begin{aligned}
& y=(900-3 x)(x) \\
& y=900 x-3 x^{2} \\
& \text { or } y=-3 x^{2}+900 x \quad(G F) \\
& y=-3\left(x^{2}-300 x\right) \\
& y-67500=-3\left(x^{2}-300 x+22500\right) \\
& y-67500=-3(x-150)^{2} \\
& y=-3(x-150)^{2}+67500 \quad \text { (SF) }
\end{aligned} .
\end{aligned}
$$

Vertex $(150,67500)$
\rightarrow width $>$ maximum area
Therefore, the maximum area of the figure is $67500 \mathrm{~m}^{2}$.

