Quadratics #2 - Review #2

- 1. What is different about these two graphs?
 - a) Domain

- b) Range
- c) Axis of Symmetry
- d) Stretch Factor

2. $y = a(x-h)^2 + k$

Which graph has a change in "h" only?

3.
$$y = a(x-h)^2 + k$$

4.
$$y = a(x-h)^2 + k$$

Which graph has a change in "a" only?

- *** Use the following equation for questions (5-7): $\frac{1}{2}(y-3) = (x+4)^2$
- 5. The "3" moves the graph:
 - a) up/down
- b) left/right
- c) and stretches it
- d) and reflects it in the x-axis

- 6. The "4" moves the graph:
 - a) up/down
- b) left/right
- c) and stretches it
- d) and reflects it in the x-axis

- 7. The "1/2":
 - a) moves the graph up/down b) moves the graph sideways (c) stretches the graph d) flips the graph
- The parabola shown in the diagram has its x-intercepts at (-3, 0) and (11, 0). Which one of the following "could" be the vertex:

b) (14, -3)

c) (8, -2) d) (7, 4) Average of x-values: -3+11=8=(4,?)

14. If $y = 3(x-2)^2 + 1$ was placed in general form, it would be:

a)
$$y = 3x^2 - 6x + 3$$
 (b) $y = 3x^2 - 12x + 13$ (c) $y = 3x^2 - 6x + 13$ (d) $y = 3x^2 - 6x + 3$

$$y = 3(x-2)^{2}+1$$

$$y = 3(x-2)(x-2)+1$$

$$y = (3x-6)(x-2)+1$$

$$y = 3x^{2}-6x-6x+12+1$$

$$y = 3x^{2}-12x+13$$

15.
$$-\frac{1}{5}(y+2) = (x-1)^2 (TF)$$

Vertex $(1, -2)$

Direction Downward

Stretch Factor _____

Axis of Symmetry X = 1

Domain {X/XER}

Range $\{y \mid y \leq -2, y \in R\}$

16.
$$3(y-2)=x^2 => 3(y-2)=(x-0)^2 (TF)$$

Vertex (0,2)

Direction Voward

Stretch Factor 1/3

Axis of Symmetry $\chi = 0$

Domain &XXXER}

Range \(\frac{\xi y | y \geq 2, y \xi R\}\)