Purpose: To analyze standing waves and their properties in a known string.

Part 1: Changing the Tension on the String (fixed length)

- Place a mass on the holder (max of 300 g). The tension, T = total mass in kg x 9.81.
- Record the length of the string, in metres, that will be vibrated.
- Turn on the power source.
- Slowly increase the voltage until you observe *f*₁.
- Note: You may not observe the fundamental frequency in this part as it is a low voltage; if you do not you can calculate it from your data.
- Continue increasing the voltage until standing waves are observed and record the voltage at each harmonic.
- Double the total mass and repeat.

Part 2: Changing the Length of the String (fixed tension)

• Increase the length of the vibrating string and repeat the experiment using your initial total mass from Part 1.

Calculations

• Enter your data into Excel (the formulas and graphs are pre-programmed).

Discussion Questions

- 1. What effect did increasing tension have on the harmonic frequency?
- 2. What effect did decreasing the length of the spring have on the harmonic frequency?
- 3. What combination of tension and length gives rise to the lowest harmonic frequencies? Highest?
- 4. Does the data support the theory that each harmonic is an integer multiple of the fundamental frequency (f₁), support your answer?
- 5. What is the rate of frequency increase (of the machine) as voltage is increased?
- 6. What voltage and frequency is necessary to see the 10th harmonic for each part?
- 7. When you doubled the tension, by what factor did the frequency change?

Physics 112: Standing Waves Lab

Part 1a: Tension, T (N) =	L (m) =	Part 2a: Tension, T (N) =	L (m) =
Part 1b: Tension, T (N) =	L (m) =	Part 2b: Tension, T (N) =	L (m) =

Part 1a

Part 1b

Part 2a

Part 2b

Harmonic (N)	V (volts)
1	
2	
3	
4	
5	
6	
7	
8	

Harmonic	V
(N)	(volts)
1	
2	
3	
4	
5	
6	
7	
8	

Harmonic (N)	V (volts)	Harmonic (N)	V (volts)
1		1	
2		2	
3		3	
4		4	
		5	
5		6	
6			1
7			