Physics 112

Change in Velocity

1. Refer to the above image for the following v-t graph questions. a) What was the acceleration during the first five seconds? b) At what time(s) was there a change in direction? c) What was the displacement and distance for the entire 30 s ? d) What was the average speed and velocity for the entire trip?

2. Refer to the above image for the following v-t graph questions. a) What was the magnitude of the greatest acceleration? b) What distance was traveled between 10 and 30 seconds? c) Calculate the average speed and velocity for the full 50 s .
3. A car undergoes a constant acceleration from rest to $28 \mathrm{~m} / \mathrm{s}$ in 9.5 s . What distance was covered in that time?
4. Not noticing a red light a drivers slams on the brakes squeeling to a halt in 3.75 s . Just before hitting the brakes the car was traveling $17 \mathrm{~m} / \mathrm{s}$ and was 30 m from the light. a) What was the average acceleration of the car? b) Determine if the driver able to stop before reaching the traffic light by finding the distance required to stop.
5. An airplane lands with a speed of $70 \mathrm{~m} / \mathrm{s}$. After 3.5 s the airplane is traveling $17.5 \mathrm{~m} / \mathrm{s}$. a) What was the average acceleration of the airplane? b) What distance does the airplane need to stop?
6. During take off a Boeing 747 airplane accelerates at a constant
7. During take off a Boeing 747 airplane accelerates at a constant
$10.8 \mathrm{~m} / \mathrm{s}^{2}$. The airplane accelerated, from rest, for 7.8 s before it left the ground. a) With what speed did the airplane leave the ground? b) What distance was required for take-off?

8. A ball is thrown upwards, on the Earth ($a_{\text {gravity }}=-9.81 \mathrm{~m} / \mathrm{s}^{2}$, with an initial speed of $17 \mathrm{~m} / \mathrm{s}$. a) How long will the ball be traveling upwards? b) How high up will the ball travel?
9. A loonie dropped from the observation deck on the CN Tower in Toronto takes 8.35 s to hit the ground. a) Assuming no air resistance, with what speed is the loonie striking the ground? b) How high is the observation deck from the ground? (ta ke $a_{\text {gravity }}=-9.81 \mathrm{~m} / \mathrm{s}^{2}$)

10. During its fall to Earth, hail stones from cumulonimbus clouds reach a terminal velocity (a constant speed) because of air resistance. a) Calculate at what speed a hail stone would strike the Earth if it continued to accelerate at $a_{\text {gravity }}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ during its 20.2 s fall to the ground.

Acces format version 3.60B

(C) 1997-2003 EducAide Software

Licensed for use by Evan Hardy cOLLEGIATE

Physics $112 \quad$ Change in Velocity Mr. P. MacDonald $2 / 22 / 2012$

Answer List

1. a) $\left.a=4.0 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~b}\right) t=24 \mathrm{~s} \mathrm{c)}$ disp $=350 \mathrm{~m}$, dist $\left.=710 \mathrm{~m} \mathrm{~d}\right) S p e e d=24 \mathrm{~m} / \mathrm{s}, v_{a v g}=11.7 \mathrm{~m} / \mathrm{s}$
2. a) $\left.30 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~b}\right)$ dist $=2375 \mathrm{~m} \mathrm{c)} \mathrm{speed}=74 \mathrm{~m} / \mathrm{s}$, $v_{\text {avg }}=-50 \mathrm{~m} / \mathrm{s}$
3. $\mathrm{d}=133 \mathrm{~m}$
4. a) $a_{\text {avg }}=-4.5 \mathrm{~m} / \mathrm{s}^{2}$, b) No, the driver needed 32 m to stop so the car ended up 2 m into the intersection.
5. a) $a_{a v g}=-15 \mathrm{~m} / \mathrm{s}^{2}$ b) $d=163 \mathrm{~m}$
6. a) $v_{f}=84 \mathrm{~m} / \mathrm{s}$ b) $d=330 \mathrm{~m}$
7. a) $t=1.73 \mathrm{~s} ; \mathbf{b}) d=15 \mathrm{~m}$
8. a) $\left.v_{f}=-82 \mathrm{~m} / \mathrm{s} ; \mathbf{b}\right) d=342 \mathrm{~m}$
9. a) $v_{f}=-198 \mathrm{~m} / \mathrm{s}$;
