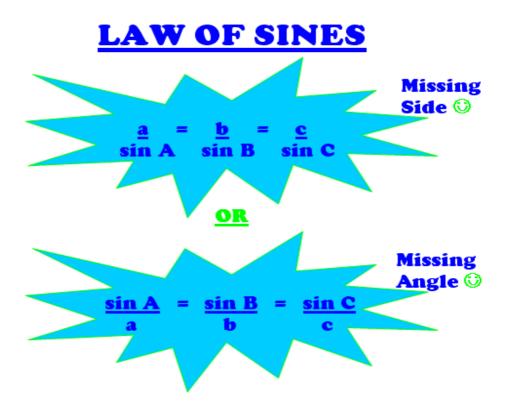
$$\frac{\sin H}{a} = \frac{\sin B}{b} = \frac{\sin C}{b}$$

$$Sin H = \frac{h}{c}$$

$$Sin H = \frac{h}{c}$$

$$Sin C = \frac{h}{a}$$

$$CSin H = a Sin C$$


## Law of Sines/Law of Cosines

You now know how to solve for unknown angles and side lengths in a right-angled triangle.

How do we obtain missing measurements in oblique (non-right) triangles?

**ANSWER: !** LAW OF SINES

**LAW OF COSINES** 



Note: Any one proportional statement is all that is used at one time.

## When will you use the Law of sines?

## You will use the Law of Sines when:

- A) you are given two angles and a non-included side (AAS).
- B) you are given two angles and an included side (ASA).
- c) you are given two sides and an angle opposite to one of them (SSA).

LAW OF SINES EXAMPLES

1 To find a missing side is

We have => "a", "A", & "B".

We are looking for => "b"

Therefore we can use:

a = b

SinA SinB

10 = b ("Cross Multiply")

Sin 1202 Sin 25"

10 Sin 25° = b sin 120°

Sin 120