Physics 122 Charge and Coulomb's Law (Two Charges)

- 1. How many electrons are needed to make up 25 C of charge? $(1.6 \times 10^{20} \text{ electrons})$
- 2. How many coulombs of charge do 1.88×10^{19} electrons have? (3.01 C)
- 3. How many electrons must be removed from a small pith ball to give it a charge of 1.0×10^{-12} C? (6.3 x 10^{6})
- 4. How many excess electrons are on a ball with a charge of $2.04 \times 10^{-17} \,\mathrm{C}$? (128)
- 5. Two charges, q_1 and q_2 , are separated by a distance, d, and exert a force, F, on each other. What new force will exist if:
 - a) q_2 is doubled?
 - b) d is tripled?
 - c) q_1 is halved and q_2 is tripled?
 - d) q₂ is doubled and d is tripled?
 - e) q_1 is halved, q_2 is one-fourth its original value and d is one-fourth its original value?
- 6. A positive charge of 1.8 x 10⁻⁶ C and a negative charge of 1.0 x 10⁻⁶ C are 0.040 m apart. What is the magnitude of the force between the two charges? (10 N).
- 7. A negative charge of 4.0×10^{-6} C exerts a force of repulsion of 7.2 N on a second charge. The charges are separated by 0.050 m. What is the sign and magnitude of the second charge? (-5.0 x 10^{-7} C)
- 8. How far apart are two charges of 1.0 μ C and –1.0 μ C if they exert a force of attraction of 440 N on each other? (4.5 x 10⁻³ m)
- 9. What is the magnitude of the electrostatic force exerted by the proton in a hydrogen atom on the electron that orbits the nucleus when the electron is 5.3 x 10⁻¹¹ m from the proton? (8.2 x 10⁻⁸ N)
- 10. How far apart are two electrons if they exert a force of repulsion of $1.80 \times 10^{-10} \text{ N}$ on each other? (1.13 $\times 10^{-9} \text{ m}$)
- 11. At what separation distance do two point charges of 2.0 μ C and -3.0 μ C exert a force of attraction on each other of 565 N? (9.8 x 10⁻³ m)
- 12. A distance of 0.64 m separates two neutral spheres. If 2.0×10^{13} electrons are removed from one sphere and placed on the other, what is the magnitude of the force that exists between the spheres? (0.23 N)
- 13. Two spheres, one with three times the charge of the other, are located 24 cm apart and exert a repulsive force of 72 N on each other. What is the magnitude of the charge of the sphere with more charge? (3.7 x 10⁻⁵ C)