Charge and Coulomb's Law (Two Charges)

1. How many electrons are needed to make up 25 C of charge?
(1.6×10^{20} electrons)
2. How many coulombs of charge do 1.88×10^{19} electrons have?
(3.01 C)
3. How many electrons must be removed from a small pith ball to give it a charge of $1.0 \times 10^{-12} \mathrm{C}$? $(6.3 \mathrm{x}$ 10^{6})
4. How many excess electrons are on a ball with a charge of $2.04 \times 10^{-17} \mathrm{C}$?
(128)
5. Two charges, q_{1} and q_{2}, are separated by a distance, d , and exert a force, F , on each other. What new force will exist if:
a) q_{2} is doubled?
b) d is tripled?
c) q_{1} is halved and q_{2} is tripled?
d) q_{2} is doubled and d is tripled?
e) q_{1} is halved, q_{2} is one-fourth its original value and d is one-fourth its original value?
6. A positive charge of $1.8 \times 10^{-6} \mathrm{C}$ and a negative charge of $1.0 \times 10^{-6} \mathrm{C}$ are 0.040 m apart. What is the magnitude of the force between the two charges? (10 N).
7. A negative charge of $4.0 \times 10^{-6} \mathrm{C}$ exerts a force of repulsion of 7.2 N on a second charge. The charges are separated by 0.050 m . What is the sign and magnitude of the second charge? $\left(-5.0 \times 10^{-7} \mathrm{C}\right)$
8. How far apart are two charges of $1.0 \mu \mathrm{C}$ and $-1.0 \mu \mathrm{C}$ if they exert a force of attraction of 440 N on each other? $\left(4.5 \times 10^{-3} \mathrm{~m}\right)$
9. What is the magnitude of the electrostatic force exerted by the proton in a hydrogen atom on the electron that orbits the nucleus when the electron is $5.3 \times 10^{-11} \mathrm{~m}$ from the proton? $\left(8.2 \times 10^{-8} \mathrm{~N}\right)$
10. How far apart are two electrons if they exert a force of repulsion of $1.80 \times 10^{-10} \mathrm{~N}$ on each other? (1.13 $\times 10^{-9} \mathrm{~m}$)
11. At what separation distance do two point charges of $2.0 \mu \mathrm{C}$ and $-3.0 \mu \mathrm{C}$ exert a force of attraction on each other of $565 \mathrm{~N} ?\left(9.8 \times 10^{-3} \mathrm{~m}\right)$
12. A distance of 0.64 m separates two neutral spheres. If 2.0×10^{13} electrons are removed from one sphere and placed on the other, what is the magnitude of the force that exists between the spheres? $(0.23 \mathrm{~N})$
13. Two spheres, one with three times the charge of the other, are located 24 cm apart and exert a repulsive force of 72 N on each other. What is the magnitude of the charge of the sphere with more charge? (3.7 x $10^{-5} \mathrm{C}$)
