SOLUTIONS => Trigonometry Worksheet #1

- a) hypotenuse => 13cm b) opposite < A => 12cm c) opposite < B => 5 cm d) adjacent to < A => 5cm e) adjacent to < B => 12cm.

Da)
$$\sin A = \frac{\text{opp}}{\text{hyp}}$$
 b) $\cos A = \frac{\text{odj}}{\text{hyp}}$ c) $\tan A = \frac{\text{opp}}{\text{adj}}$
= $\frac{13}{13}$ = $\frac{13}{13}$

d)
$$\sin B = \frac{\text{opp}}{\text{opp}}$$
 e) $\cos B = \frac{\text{adj}}{\text{hyp}}$ f) $\tan B = \frac{\text{opp}}{\text{adj}}$
= $\frac{5}{13}$ = $\frac{13}{12}$

b)
$$\tan R = \frac{4}{3}$$

$$4a) sinQ = opp b) cos S = adj c) tanM = opp adj = 0$$

$$= 6 = 9$$

$$= 34$$

$$= 10$$

d)
$$Sin A = Opp e) cosf$$

= $\frac{15}{17}$

5. The first step is to find the missing side?

$$C^2 = (6)^2 + (8)^2$$

 $C^2 = (6)^2 + (8)^2$
 $C^2 = 100$
 $C = 100$

- a) sin A = opp b) sin B = opp c) cos A = odj $= \frac{hyp}{10}$ $= \frac{6}{10}$
- d) cosB = adj e) tanA = opp f) tanB = opp adj = 8 = 6 = 6

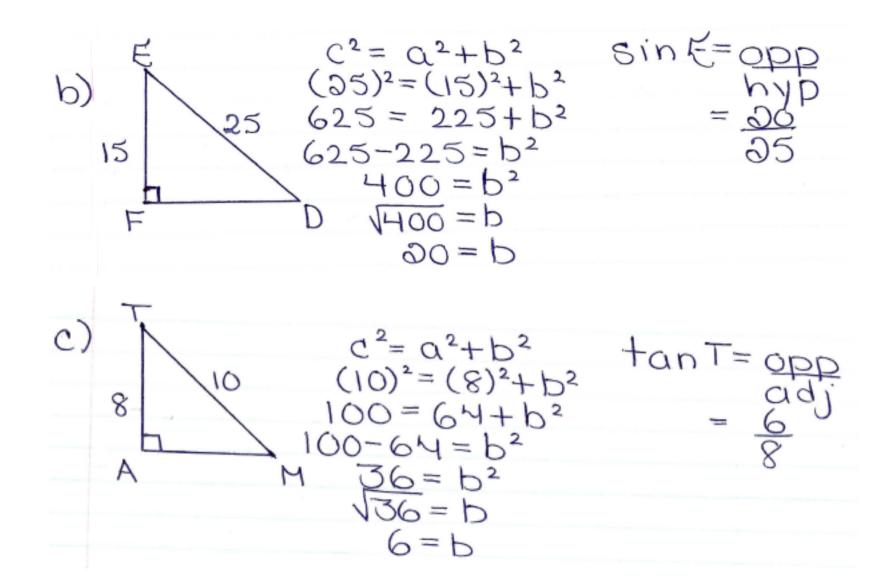
6 a)
$$c^2 = a^2 + b^2$$
 Sin $A = opp \cos A = adj$
 $(13)^2 = (12)^2 + q^2$ hyp hyp
 $169 = 144 + q^2$ = 5 = 12
 $169 - 144 = q^2$ 13 = 13
 $35 = q^2$ $\tan A = opp$
 $5 = q$ = adj
 $5 = q$ = 5

b)
$$C^2 = C^2 + b^2$$

 $(20)^2 = (16)^2 + b^2$
 $400 = 256 + b^2$
 $400 - 256 = b^2$
 $144 = b^2$
 $1144 = b$
 $12 = b$

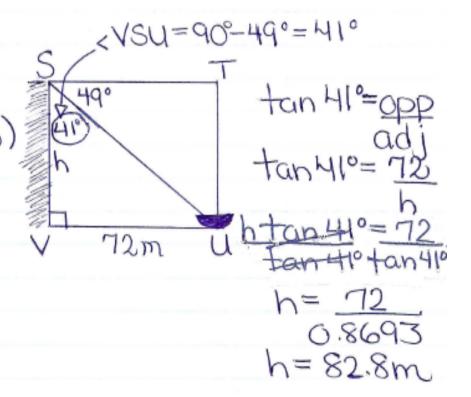
b)
$$C^2 = G^2 + b^2$$
 $\sin A = Opp \cos A = adj$
 $(30)^2 = (16)^2 + b^2$ $= 13$ $= 16$
 $400 - 356 = b^2$ $= 30$ $= 16$
 $144 = b^2$ $= 13$ $= adj$
 $13 = b$ $= 13$

7a)
$$c^2 = a^2 + b^2$$
 $sin A = 3$ $sin B = 4$
 $(5)^2 = (4)^2 + b^2$ $cos A = 4$ $cos B = 3$
 $35 = 16 + b^2$ $cos A = 4$ $tan B = 4$
 $9 = b^2$ $tan A = 3$ $tan B = 4$
 $3 = b$
b) $c^2 = a^2 + b^2$ $sin X = 15$ $sin Y = 20$
 $(35)^2 = (15)^2 + b^2$ $as X = 20$ $as X = 20$
 $(35)^2 = (15)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X = 20$
 $(35)^2 = (35)^2 + b^2$ $as X$


C)
$$C^2 = a^2 + b^2$$
 Sin $R = 8$ Sin $Q = 15$
 $(17)^2 = (15)^2 + b^2$ IT $COSQ = 8$
 $389 - 225 = b^2$ $COSR = 15$ $COSQ = 8$
 $64 = b^2$ $COSQ = 8$
 17 17 17
 $64 = b^2$ $COSQ = 8$
 17 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17
 17 17

d)
$$d^2 = a^2 + b^2$$
 $\sin k = 24$ $\sin N = 1$
 $c^2 = (7)^2 + (2)^2$ $\cos k = 1$ $\cos N = 24$
 $c^2 = 49 + 576$ $\cos k = 1$ $\cos N = 24$
 $c^2 = 625$ $\cos k = 24$ $\cos N = 24$
 $c = 625$ $\tan k = 24$ $\tan N = 1$
 $c = 25$

Weneed to find the missing side first?


$$C^{2} = a^{2} + b^{2}$$
 $\cos G = adj$
 $C^{2} = (3)^{2} + (4)^{2}$ hyp
 $C^{2} = 9 + 16$ = 3
 $C^{2} = 35$ $\sin F = 0pp$
 $C = 5$ hyp
 $C = 5$

$$C^2 = a^2 + b^2$$

 $C^2 = (6)^2 + (8)^2$
 $C^2 = 36 + 64$
 $C^2 = 100$
 $C = 100$
 $C = 100$

c) $\cos 41^{\circ} = 0.7547$ d) $\cos 49^{\circ} = 0.6561$ e) $\tan 49^{\circ} = 1.1504$ f) $\sin 49^{\circ} = 0.7547$

Sin M9°=0.7547

a)
$$\sin 41^{\circ} = \frac{opp}{hyp}$$

 $\sin 41^{\circ} = \frac{h}{100}$
 $100 \sin 41^{\circ} = h$
 $120(0.6561) = h$
 $18.7 m = h$

d)
$$tan M9° = Opp$$
 adj
 $tan M9° = h$
 122
 $122 + an M9° = h$
 $122(1.150 + 1) = h$
 $140 m = h$

13.
$$tan 76^{\circ} = \frac{opp}{adj}$$

 $tan 76^{\circ} = \frac{h}{50}$
 $50tan 76^{\circ} = h$
 $50(4.0108) = h$
 $500.5m = h$
 $001m = h$

14.
$$tan 42^{\circ} = opp$$
 adj
 $tan 42^{\circ} = h$
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5
 1.5

$$15. + an 36° = h$$
 $14 + an 36° = h$
 $14 (0.4877) = h$
 $6.8m = h$
or
 $7m = h$