SolUTIONS \Rightarrow Trigonometry Worksheet \#4.

$$
\begin{gathered}
\sin 65^{\circ}=\frac{\text { opp }}{\text { hyp }} \\
\sin 65^{\circ}=\frac{x}{7 m} \\
(7 \mathrm{~m})\left(\sin 65^{\circ}\right)=x \\
(7 \mathrm{~m})(0.9063)=x \\
6.3 \mathrm{~m}=x
\end{gathered}
$$

2

$\tan 55^{\circ}=$ opp

$$
\begin{gathered}
\tan 55^{\circ}=\frac{x}{25^{7} 7 \mathrm{~m}} \\
(257 \mathrm{~m})\left(\tan 55^{\circ}\right)=x \\
(257 \mathrm{~m})(1.4281)=x \\
367.0 \mathrm{~m}=x
\end{gathered}
$$

$$
\left.\begin{array}{rl}
\tan 54^{\circ} & =\frac{\text { opp }}{\text { adj }} \quad \begin{array}{rl}
\text { The distance } \\
\text { across the }
\end{array} \\
\tan 54^{\circ} & =\frac{120 \mathrm{~m}}{\mathrm{c}} \quad \text { gorge is } \\
87.2 \mathrm{~m}
\end{array}\right] \begin{aligned}
\frac{\mathrm{tan} 54^{\circ}}{\tan 54^{\circ}} & =\frac{120 \mathrm{~m}}{\tan 54^{\circ}} \\
C & =\frac{120 \mathrm{~m}}{1.3764} \\
C & =87.2 \mathrm{~m}
\end{aligned}
$$

4.

a)

$$
\begin{aligned}
& \cos \theta=\frac{a d j}{\text { hel }} \text { The ladder } \\
& \text { will make an } \\
& \cos \theta=\frac{6.5 \mathrm{~m}}{8 \mathrm{~m}} \text { angle of } 36^{\circ} \\
& \cos \theta=0.8125 \\
& \theta=\cos ^{-1}(0.8125) \\
& \theta=36^{\circ}
\end{aligned}
$$

b) $d^{2}=a^{2}+b^{2}$ The foot of $(8)^{2}=a^{2}+(6.5)^{2}$ the ladder $64=a^{2}+42.25$ is 4.7 m
$64-42.25=a^{2}$ from the wall.
$21.75=a^{2}$

$$
4.7 m=a
$$

5.

 $\tan 15^{\circ}=\frac{\text { opp }}{\text { adj }}$ It is 746.5 m $\tan 15^{\circ}=\frac{200 \mathrm{~m}}{x}$ of the tower.

$$
\begin{gathered}
\frac{x \tan 15^{\circ}}{\tan 15^{\circ}}=\frac{200 \mathrm{~m}}{\tan 15^{\circ}} \\
x=\frac{200 \mathrm{~m}}{0.2679} \\
x=746.5 \mathrm{~m}
\end{gathered}
$$

$$
\begin{gathered}
\cos 37^{\circ}=\frac{\text { adj }}{\text { hyp }} \quad \begin{array}{l}
\text { The radio } \\
\text { tower is } \\
159.7 \mathrm{~m}
\end{array} \\
\cos 37^{\circ}=\frac{x}{200 \mathrm{~m}} \quad \begin{array}{l}
\text { high. }
\end{array} \\
(200 \mathrm{~m})\left(\cos 37^{\circ}\right)=x \\
(200 \mathrm{~m})(0.7986)=x \\
159.7 \mathrm{~m}=x
\end{gathered}
$$

7.

Angle of Inclination

Angle of Elevation

$$
\begin{aligned}
\sin \theta & =\frac{\text { opp }}{\text { hyp }} \\
\sin \theta & =\frac{10 \mathrm{~m}}{1.25 \mathrm{~m}} \\
\sin \theta & =0.0800 \\
\theta & =\sin ^{-1}(0.0800) \\
\theta & =5^{\circ}
\end{aligned}
$$

The angle of inclination of the road is 5°.
8.
 $\tan \theta=$ opp

$$
\begin{aligned}
\tan \theta & =\frac{1 \mathrm{adj}}{5 \mathrm{~m}} \\
\tan \theta & =0.2000 \\
\theta & =\tan ^{-1}(0.2000) \\
\theta & =11^{\circ}
\end{aligned}
$$

The angle of inclination of the ramp is 11°.

13.

a) $\tan 39^{\circ}=\frac{\text { opp }}{\text { ad }}$
$\tan 39^{\circ}=\frac{a d j}{x}$

$$
\begin{gathered}
(100 \mathrm{~m})\left(\tan 39^{\circ}\right)=x \\
(100 \mathrm{~m})(0.8098)=x \\
81.0 \mathrm{~m}=x
\end{gathered}
$$

The building is 81.0 m high
b) $\tan 42^{\circ}=\mathrm{opp}$

$$
\begin{aligned}
& \tan 42^{\circ}=\operatorname{adj} \\
& \tan 42^{\circ}=\frac{(x+y)}{100 \mathrm{~m}} \\
& (100 \mathrm{~m})\left(\tan 42^{\circ}\right)=x+y \\
& (100 \mathrm{~m})(0.9004)=x+y \\
& 90.0 \mathrm{~m}=x+y \\
& \text { Building+ Flagpole }
\end{aligned}
$$

the tip of the flagpole.

b) $\tan 82^{\circ}=$ opp adj $\tan 82^{\circ}=\frac{(x+y)}{70 m}$

$$
(70 \mathrm{~m})\left(\tan 82^{\circ}\right)=x+y
$$

$$
(70 \mathrm{~m})(7.1154)=x+y
$$

$$
498.1 m=x+y
$$

Since $x=303.2 \mathrm{~m}$
Then $\begin{aligned} y & =498.1 \mathrm{~m}-303.2 \mathrm{~m} \\ & =194.9 \mathrm{~m}\end{aligned}$
a) $\tan 77^{\circ}=$ opp

$$
\begin{gathered}
\tan 77^{\circ}=\frac{x}{70 \mathrm{~m}} \\
(70 \mathrm{~m})\left(\tan 77^{\circ}\right)=x \\
(70 \mathrm{~m})\left(4.335^{\circ}\right)=x \\
303.2 \mathrm{~m}=x
\end{gathered}
$$

The distance from the bottom of the cliff to the closer boat is 303.2 m .

The distance between the two boats is 194.9 m .

