Physics 122

## Circular Motion: Unbanked and Banked Curves

1. A car rounds an unbanked curve (radius $=92 \mathrm{~m}$ ) without skidding at a speed of $26 \mathrm{~m} / \mathrm{s}$. What is the smallest possible coefficient of static friction between the tires and the road? (0.75)
2. At what angle should a curve of radius 150 m be banked so cars can travel safely at $25 \mathrm{~m} / \mathrm{s}$ without relying on friction? $\left(23^{\circ}\right)$
3. A curve of radius 120 m is banked at an angle of $18^{\circ}$. At what speed can it be negotiated under icy conditions when friction is neglected? $(20 \mathrm{~m} / \mathrm{s})$
4. A car is safely negotiating an unbanked circular turn at a speed of $21 \mathrm{~m} / \mathrm{s}$. The maximum static frictional force acts on the tires. Suddenly, a wet patch in the road reduces the maximum static frictional force a factor of three. If the car is to continue safely around the curve, to what speed must the driver slow the car? ( $12 \mathrm{~m} / \mathrm{s}$ )
5. On a banked race track, the smallest circular path on which cars can move has a radius of 112 m , while the largest has a radius of 165 m , as the drawing illustrates. The height of the outer wall is 18 m . Find the smallest and largest speed at which cars can move on this track without relying on friction. ( $19 \mathrm{~m} / \mathrm{s}, 23 \mathrm{~m} / \mathrm{s}$ )

6. Two curves on a highway have the same radii. However, one is unbanked and the other is banked at an angle $\theta$. A car can safely travel along the unbanked curve at a maximum speed $v_{o}$ under conditions when the coefficient of static friction between the tires and the road is 0.81 . The banked curve is frictionless, and the car can negotiate it at the same maximum speed $v_{0}$. Find the angle $\theta$ of the banked curve. ( $39^{\circ}$ )
