Chemistry

\Rightarrow Elements, Compounds, subscript, superscript, coefficient
\Rightarrow Periodic Table

- Periods, groups, etc.
- Metals
- Non-metals
- Metalloids
\Rightarrow The patterns are related to the chemical properties of the element.
\Rightarrow Patterns in the periodic table describe how substance behave during a chemical reaction.
\Rightarrow Why do elements in the same group have similar chemical properties?
\Rightarrow What is it about metals and non-metals that allows you to predict the kinds of compounds they are likely to form?
\Rightarrow Electron Shells

\Rightarrow Notice the shells and valence electrons.
\Rightarrow Knowing the number of electrons helps you predict the formation of compounds, name the compounds, and write their chemical formulas.
\Rightarrow A chemical bond forms between two atoms when electrons in the outer shell of each atom from a stable arrangement together.
\Rightarrow Outer shell is called the valence shell, the electrons in the outer shell are the valence electrons.
\Rightarrow Chemical properties are related to the energy changes that take place when their atoms lose, gain, or share electrons to obtain a filled valence shell.
\Rightarrow Elements that easily gain or lose electrons are very reactive.
\Rightarrow Cations:
- Energy is added to the atom, which then (collides) releases an electron. Write out symbol.
- Reactivity increases down the group - farther from nucleus.
- Want to have valence shell like that of a noble gas.
- Group two not as reactive as group one, why is that?
\Rightarrow Anions:
- Electron joins the atom releasing energy. - Write out symbol.
- Atoms gain electrons to have the valence shell of a noble gas.
- Chemical reactivity decreases as you move down the group - why is that?

Writing Names of Formulas of Binary Ionic Compounds

\Rightarrow Binary compound consist of only two elements.
\Rightarrow Anions are named by changing their ending to "ide"
$\circ \mathrm{F}^{-} \rightarrow$ Fluoride
$\circ \mathrm{O}^{2-} \rightarrow$ Oxide

- $\mathrm{CO}_{2} \rightarrow$ carbon dioxide
$\circ \mathrm{Cl}^{-} \rightarrow$
\Rightarrow The subscript in a formula is determined by the charges of the ions (are the valence shells filled? Does each element have a noble gas electron configuration?)
\Rightarrow Name the following compounds:
$\circ \mathrm{LiO} \rightarrow$
- $\mathrm{MgO} \rightarrow$
- $\mathrm{K}_{2} \mathrm{~S} \rightarrow$
- $\mathrm{KN}_{3} \rightarrow$
- $\mathrm{AlBr}_{3} \rightarrow$
\Rightarrow Create formulas and check for a balanced charge using the "cross-over" method. The charge of the cation becomes the subscript for the anion, and vice-versa.
- $\mathrm{Al}^{3+} \mathrm{O}^{2-} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}$ Check charges: $2 \times(3+)=6+$;

$$
3 \times(2-)=6-
$$

\Rightarrow When the metal and non-metal have the same charge (different sign), always write the simplest ratio.

- Barium Oxide: $\mathrm{Ba}^{2+} \mathrm{O}^{2-} \rightarrow \mathrm{Ba}_{2} \mathrm{O}_{2} \rightarrow \mathrm{BaO}$
\Rightarrow Use the "cross-over" method to write the formula of each of the following:
- Beryllium fluoride
- Sodium nitride
- Calcium sulfide
- Aluminum chloride
- Lithium oxide
- Magnesium nitride
- Gallium sulfide
- Barium bromide
\Rightarrow The transition metals can form more than one ion. Given the formula for the compound we can work backwards to determine the charge of the ion; this method is called the "reverse crossover" method.
- Iron Oxide: $\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Fe}^{3+} \mathrm{O}^{2-}$
- Copper Oxide: $\mathrm{Cu}_{2} \mathrm{O} \rightarrow \mathrm{Cu}^{+} \mathrm{O}^{2-}$
\Rightarrow Name the following compounds:
- $\mathrm{Cu}_{2} \mathrm{~S}$
- PbO_{2}
- NiCl_{2}
- CrN
- HgO
- $\mathrm{Cu}_{3} \mathrm{P}_{2}$
\Rightarrow The Stock Naming System: For use with transition metals.
- The charge on the cation is written, in parenthesis, as Roman numeral after the name of the metal.
- Transition metals can bond with different amounts of electrons (can have a different ionic charge), but remember that the anions will always gain the same number of electrons no matter what the compound is.
- $\mathrm{FeCl}_{3} \rightarrow \mathrm{Fe}^{3+} \mathrm{Cl}^{-} \rightarrow$ iron (III) chloride
- $\mathrm{FeO} \rightarrow \mathrm{Fe}^{+} \mathrm{O}^{2-} \rightarrow$
- $\mathrm{Cu}_{2} \mathrm{~S} \rightarrow \mathrm{Cu}^{+} \mathrm{S}^{2-} \rightarrow$
- $\mathrm{PbO}_{2} \rightarrow$
\Rightarrow Write the chemical formulas for each of the following compounds:
- Copper(I) oxide
- Lead(IV) bromide
- Iron(III) sulfide
- Nickel(III) fluoride
- Manganese(IV) sulfide

Writing Names of Formulas of Binary Molecular Compounds

\Rightarrow Binary molecular compounds consist of covalent bonds of two different non-metals.
\Rightarrow Three rules to writing names and formulas:

- The name of the compound ends in "ide" (like that for the ionic compounds).
- Name and formula (usually) begins with the element that is more to the left on the periodic table.
- Use a prefix to specify the number of atoms of each element that are present in the molecule. (Pg. 162)

Prefix	Number it Represents
mono	1
di	2
tri	3
tetra	4
penta	5
hexa	6
hepta	7

octa	8
nona	9
deca	10

\Rightarrow Examples: Name the following molecular compounds.

- $\mathrm{N}_{2} \mathrm{O} \rightarrow$
- $\mathrm{N}_{2} \mathrm{O}_{3} \rightarrow$
- $\mathrm{C}_{3} \mathrm{H}_{8} \rightarrow$
- $\mathrm{H}_{2} \mathrm{O} \rightarrow$
- $\mathrm{BCl}_{5} \rightarrow$
\Rightarrow Examples: Write the formulas for the following compounds.
- Dihydrogen dioxide
- Hydrogen chloride
- Tricarbon disulfide
- Dinitrogen monophosphide
- Carbon tetrahydride

Names and Formulas for Polyatomic Ions
\Rightarrow Ions that consist of two or more different non-metal atoms (joined by covalent bonds)
\Rightarrow An example is the hydroxide ion, OH^{-}formed one a covalent bond of water is broken.
\Rightarrow Only one polyatomic cation: ammonium ion, $\mathrm{NH}_{4}{ }^{+}$
\Rightarrow Except for the hydroxide ion, many polyatomic ions end in the suffix "ate" rather than "ide". Other than that the procedure for writing the names and formulas is the same as that for ionic compounds.
\Rightarrow Writing the formulas follow the same technique, but the polyatomic ion is written in parentheses (when there is more than one of them).

Name	Chemical Formula
Ammonium ion	$\mathrm{NH}_{4}{ }^{+}$
Hydroxide ion	OH^{-}
Carbonate	$\mathrm{CO}_{3}{ }^{2-}$
Nitrate	NO^{3-}
Sulfate	$\mathrm{SO}_{4}{ }^{2-}$
Hydrogen Carbonate	HCO^{3-}
Hydrogen Sulfate	$\mathrm{HSO}_{4}{ }^{-}$
Phosphate	$\mathrm{PO}_{4}{ }^{3-}$

\Rightarrow Iron (III) hydroxide $\rightarrow \mathrm{Fe}^{3+} \mathrm{OH}^{-} \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}$
\Rightarrow What is the formula for ammonium phosphide?
$\circ \mathrm{NH}_{4}^{+}$and $\mathrm{P}^{3-} \rightarrow\left(\mathrm{NH}_{4}\right)_{3} \mathrm{P}$
\Rightarrow What is the name of $\operatorname{Ag}\left(\mathrm{PO}_{4}\right)$?
$\circ \mathrm{Ag}\left(\mathrm{PO}_{4}\right) \rightarrow \mathrm{Ag}^{+}$and $\mathrm{PO}_{4}^{-} \rightarrow \mathrm{Ag} 3+$ and $\mathrm{PO}_{4}^{3-} \rightarrow$
Silver(III) Phosphate
\Rightarrow Ferrum $=\operatorname{Iron}(\mathrm{I})$, Ferrous $=\operatorname{Iron}(\mathrm{II})$, Ferric $=\operatorname{Iron}(\mathrm{III})$

Writing and Balancing Chemical Equations

\Rightarrow In a chemical reaction mass is conserved (except a nuclear reaction in which energy is conserved).
\Rightarrow The simplest form of a chemical equation is a word equation.

- Sodium + Chlorine \rightarrow Sodium chloride
$\circ+$ means reacts with, \rightarrow means produces
- left: reactants; right: products
\Rightarrow Writing the chemical formulas in place of the names creates a skeleton equation.
- $\mathrm{Na}+\mathrm{Cl}_{2} \rightarrow \mathrm{NaCl}$
\Rightarrow The equation contains more atoms of reactants than products, so as is, mass is not conserved.
\Rightarrow We will use coefficients to balance the equation so that there are the same number of atoms on both sides.
\Rightarrow This produces a balanced equation.
- $2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}$
\Rightarrow Example: Iron reacts with water to form ferric oxide and hydrogen. Write out the balanced chemical equation.
- $\mathrm{Fe}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{H}_{2}$
- Remember: diatomic elements must always include two of the atoms.
- Step 1: Only the hydrogen is balanced to begin. There is 1 Fe on the left and 2 on the right, so balance the iron by writing 2 Fe ,
- $2 \mathrm{Fe}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{H}_{2}$
- That leaves the oxygen unbalanced. Balance if by writing a 3 in front of the water,
- $2 \mathrm{Fe}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{H}_{2}$
- We have unbalanced the hydrogen! Re-balance them by writing $3 \mathrm{H}_{2}$,
- $2 \mathrm{Fe}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2}$
\Rightarrow As a general rule, leave diatomic elements to the last.
Fractional Coefficients to Balance Chemical Equations
\Rightarrow The group of diatomic elements are sometimes the most difficult to balance. In such a case we are able to use a fraction coefficient to simplify the procedure.
\Rightarrow Example 1.
$\circ \mathrm{Al}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{H}_{2}+\mathrm{AlPO}_{4}$ there is an odd number of hydrogen atoms on one side and an even number on the other, so write $1 / 2 \mathrm{H}_{2}$
- $\mathrm{Al}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow 1 / 2 \mathrm{H}_{2}+\mathrm{AlPO}_{4}$ now there is 3 on the left and one on the right, so multiply the $1 / 2 \mathrm{H}_{2}$ by 3.
- $\mathrm{Al}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \frac{3}{2} \mathrm{H}_{2}+\mathrm{AlPO}_{4}$ the equation is balanced, but we don't want fractions in our answer. Multiply every term by 2 .
- $2 \mathrm{Al}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow 3 \mathrm{H}_{2}+2 \mathrm{AlPO}_{4}$

Equations Where Polyatomic Ions are Conserved

\Rightarrow The general rule is to treat the polyatomic ions as if they are one element.
\Rightarrow Example 1: $\mathrm{KI}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{PbI}_{2}+\mathrm{KNO}_{3}$

- To start, we'll balance the iodine.
- $2 \mathrm{KI}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{PbI}_{2}+\mathrm{KNO}_{3}$
- The lead (Pb) is balanced, but there are 2 nitrate ions on the left and only one on the right. Since the nitrate ion did not change we can balance it the
same way as a single atom. $2 \mathrm{KNO}_{3}$ balances the equation.
$\circ \mathrm{KI}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{PbI}_{2}+2 \mathrm{KNO}_{3}$
\Rightarrow Example 2: $\mathrm{Al}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2}$
- Balance the Al: $2 \mathrm{Al}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2}$
- Now the sulfate groups: with $3 \mathrm{H}_{2} \mathrm{SO}_{4}$

$$
2 \mathrm{Al}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2}
$$

- Balance the hydrogen atoms with $3 \mathrm{H}_{2}$

$$
2 \mathrm{Al}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2}
$$

\Rightarrow Example 3: $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NH}_{4} \mathrm{OH} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+\mathrm{NH}_{4} \mathrm{NO}_{3}$

- There are three polyatomic ions: $\mathrm{NO}_{3}^{-}, \mathrm{OH}^{-}$, and $\mathrm{NH}_{4}{ }^{+}$. All of the ions are conserved, so we balance the equation like the polyatomic ions are single atoms.
- Two nitrates on the left and one on the right:

$$
\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NH}_{4} \mathrm{OH} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4} \mathrm{NO}_{3}
$$

- Balance the ammonium ions, which will also balance the hydroxide ions:

$$
\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NH}_{4} \mathrm{OH} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4} \mathrm{NO}_{3}
$$

Acids \& Bases

Properties of acids

\Rightarrow sour-tasting, water-soluble.
\Rightarrow many react with metal to produce H_{2}.
\Rightarrow Good conductors of electricity $\left(\mathrm{H}^{+}\right.$is released into the water).
\Rightarrow Easily recognized by their formula because it begins with hydrogen $\left(\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{HCl}, \mathrm{H}_{2} \mathrm{CO}_{3}\right)$
\Rightarrow Used in industry

- sulfuric acid: very reactive and combines with many other materials.
- Used in fertilizers, explosives, refining oil, and electroplating.
- Sulfuric and hydrochloric acid are very corrosive.

Properties of Bases

\Rightarrow bitter-tasting, water-soluble and feel slippery.
\Rightarrow Good conductors of electricity because they release hydroxide ions $\left(\mathrm{OH}^{-}\right)$when they dissolve in water.
\Rightarrow React with protein to break them down.
\Rightarrow More difficult to identify by their names; but any containing the hydroxide ion, or that react with water to form hydroxide ions are bases.

- $\mathrm{NaOH} \rightarrow$ sodium hydroxide
- $\mathrm{KOH} \rightarrow$ potassium hydroxide
$\circ \mathrm{HCO}_{3}{ }^{-} \rightarrow$ forms an $\mathrm{OH}-$ in water.

The pH Scale

\Rightarrow Compares the concentration of hydrogen ions in various solutions.
\Rightarrow used to represent how acidic or basic a solution is.
\Rightarrow Ranges from 0 to 14 , with 7 (pure water) being neutral.
\Rightarrow Bases have a high pH (above 7), acids are lower in pH (below 7).
\Rightarrow Logarithmic scale

- A change of 1 on the scale means one substance is 10 times more acid/basic.
- An acid of $\mathrm{pH}=2$ is ten times more acidic than an acid of $\mathrm{pH}=3$.
- A base of $\mathrm{pH}=13$ is ten times more basic than an acid of $\mathrm{pH}=12$.
\Rightarrow Examples:
- How many times more acidic is an acid of $\mathrm{pH}=3$ than water $(\mathrm{pH}=7)$?
- Which is the stronger base: $\mathrm{pH}=9$ or $\mathrm{pH}=14$? How many times stronger (basic) is it?
- Be careful: $\mathrm{pH}=2$, and a $\mathrm{pH}=2.5$; logarithms are not linear, a difference of 0.5 in pH does not mean 5 times as powerful.
\Rightarrow Problems 1-7, 9, and 10 .

Neutralization Reactions

\Rightarrow Mixing an acid and a base results in a neutralization reaction.
\Rightarrow The products are a salt and (often) water. There may also be other products (like a gas, CO_{2}).
\Rightarrow Water is formed by combining the H^{+}from the acid and the OH^{-}from the base: HOH , or $\mathrm{H}_{2} \mathrm{O}$.
\Rightarrow Acid - base reactions are used all the time:

- Many cleaners use this property.
- Baking soda as an ingredient in food.
- Antacids to settle a stomach that is too acidic or reacting with the stomach or esophagus lining.

