SOLUTIONS \Rightarrow EXPONENTIAL GROWTH REVIEW
$1 .\{(1,2),(2,4),(3,6),(4,8), \ldots\}$

\rightarrow| x | y |
| :--- | :--- |
| | 2 |
| 2 | 4 |
| 3 | 6 |
| 4 | 8 |

- x-values increase by 1.
- y-values increasing by +2, therefore these

2. $\{(0,1),(1,5),(2,25),(3,125), \ldots\}$

\rightarrow| x | y |
| :--- | :--- |
| 0 | 1 |
| 1 | 5 |
| 2 | 25 |
| 3 | 125 |

- x-values increase by 1 . - y-values are increasing by a factor of $5(x 5)$; therefore these coordinates are exponential.

3. $\{(-1,3),(0,6),(1,9),(2,12), \ldots\}$
\rightarrow

x	y
-1	3
0	6
1	9
2	12

- x-values increase by 1.
- y-values are increasing by +3 , therefore these coordinates are linear.
aa) $(3,12,48,192,768,3072)$ Common ratio is 4 .
b) $(6,3,3 / 2,3 / 4,3 / 8,3 / 16)$ Common ratio is $1 / 2$
c) $(7,-21,63,-189,567,-1701)$

Common ratio is -3 .

Ba) $y=2^{x} \quad$ Common ratio is 2 .
b) $y=5^{x}$ Common ratio is 5 .
c) $y=(0.6)^{x}$ common ratio is 0.6 .
d) $y=100(0.6)^{x}$ Common ratio is 0.6 .
e) $y=200(1.02)^{x}$ Common ratio is 1.02 .
4. Investment: $\$ 1500$ Interest: 5% per year.
a) $y=1500(1.05)^{x}$
b) After 7 years $\Rightarrow x=7$

$$
\begin{aligned}
& y=1500(1.05)^{7} \\
& y=\$ 2110.65
\end{aligned}
$$

5.

$$
y=1000(2)^{\frac{x}{1} \leadsto>} \text { Time it takes to double. }
$$

Initial Doubles.
Value
a). After 4 min $\Rightarrow x=4$.

$$
\begin{aligned}
y & =1000(2)^{4} \\
& =1000(16) \\
& =16000
\end{aligned}
$$

16000 bacteria after 41 min .
b) After $6 \mathrm{~min} \Rightarrow x=6$.

$$
\begin{aligned}
y & =1000(2)^{6} \\
& =1000(64) \\
& =64000 .
\end{aligned}
$$

64000 bacteria after 6 min .
c) After $10 \mathrm{~min} \Rightarrow x=10$.

$$
\begin{aligned}
y & =1000(2)^{10} \\
& =1000(1024) \\
& =1024000
\end{aligned}
$$

1024000 bacteria after 10 min .
6. $A=P\left(\frac{1}{2}\right)^{\frac{t}{92}}$
a)

$$
\begin{aligned}
& \text { Initial Amount } \Rightarrow P=7 \mathrm{~g} \\
& \text { lime } \Rightarrow t=40 \mathrm{~h} \\
& A=7\left(\frac{1}{2}\right)^{\frac{40}{92}} \\
& A=7(0.5)^{\frac{40}{92}}
\end{aligned}
$$

$$
A \approx 5.2 \mathrm{~g}
$$

b) According to the equation given, the half-life of radon -222 is 92 hours.
7. EQUATION: $\quad y=225000(1.10)^{\frac{x}{5}}$

WHEN $x=12 \quad y=225000(1.10)^{\frac{12}{5}}$
$y=\$ 282829.67$
8.a) 5^{-2}
b) 7°
c) 4^{-1}
d) 2^{-3}
e) $\begin{aligned} & \left(\frac{1}{2}\right)^{-4} \\ = & 2^{4}\end{aligned}$

$$
\begin{aligned}
& =\frac{1}{5^{2}} \\
& =\frac{1}{25}
\end{aligned}
$$

$=1$
$=\frac{1}{4^{1}}$
$=\frac{1}{2^{3}}$
f)
$(-12)^{0}$
$=1$
g) $\left(\frac{-2}{5}\right)^{-4}$
h) -8°
i) $\left(-\frac{4}{3}\right)^{-3}$

$$
=\left(-\frac{5}{2}\right)^{4}
$$

$=-1$

$$
=\left(-\frac{3}{4}\right)^{3}
$$

$$
=\frac{625}{16}=\frac{-27}{64}
$$

$$
\text { j) } \begin{aligned}
& 2^{-2}+3^{-2} \\
= & \text { k) } \\
= & \left.\frac{1}{2^{2}}+\frac{1}{3^{2}}\right)^{-3} \\
= & =\left(\frac{n^{2}}{3 m}\right)^{3} \\
= & \frac{1}{4}+\frac{1}{9} \\
= & \frac{9}{36}+\frac{4}{36} \\
= & \frac{n^{6}}{27 m^{3}} \\
= &
\end{aligned}
$$

9a)

$$
\begin{aligned}
& 3^{x+2}=3^{2 x+6} \\
& x+2=2 x+6 \\
& 2-6=2 x-x \\
& -4=x
\end{aligned}
$$

b)

$$
\begin{aligned}
& 2^{2 x+2}=16^{x+6} \\
& 2^{2 x+2}=\left(2^{4}{ }^{x+6}\right. \\
& 2^{2 x+2}=2^{4 x+24} \\
& 0 x+24 x+24 \\
& 2-24=4 x-2 x \\
&-\frac{22}{2}=\frac{2 x}{x} \\
&-11=x
\end{aligned}
$$

c)

$$
\begin{aligned}
2^{2 x+2} & =16\left(2^{x}\right) \\
2^{2 x+2} & =\left(2^{4}\right)\left(2^{x}\right) \\
2^{2 x+2} & 2^{4+x} \\
2 x+2 & =4+x \\
2 x-x & =4-2 \\
x & =2
\end{aligned}
$$

d)

$$
\begin{gathered}
8^{x}+2 y=88 \\
8^{x}=88-24 \\
8^{x}=64^{x} \\
8^{x}=8^{2} \\
x=2
\end{gathered}
$$

e)

$$
\begin{aligned}
3^{x-2} & =\frac{27^{2 x}}{9^{x-1}} \\
3^{x-2} & =\frac{\left(3^{3}\right)^{2 x}}{\left(3^{2}\right)^{x-1}} \\
3^{x-2} & =\frac{3^{6 x}}{3^{2 x-2}} \\
3^{x-2} & =3^{6 x-(2 x-2)} \\
3^{x-2} & =3^{6 x-2 x+2} \\
3^{x-2} & =3^{4 x+2} \\
x-2 & =4 x+2 \\
-2-2 & =4 x-x \\
-\frac{4}{3} & =\frac{8 x}{8} \\
\frac{-4}{3} & =x
\end{aligned}
$$

f)

$$
\begin{aligned}
\left(4^{x}\right)\left(2^{x+3}\right) & =16^{2 x-5} \\
\left(2^{2}\right)^{x}\left(2^{x+3}\right) & =\left(2^{4} 2^{2 x-5}\right. \\
\left(2^{2 x}\right)\left(2^{x+3}\right) & =2^{8 x-20} \\
2^{2 x+x+3} & =2^{8 x-20} \\
2^{3 x+3} & =2^{8 x-20} \\
3 x+3 & =8 x-20 \\
3+20 & =8 x-3 x \\
\frac{23}{5} & =\frac{8 x}{8} \\
\frac{23}{5} & =x
\end{aligned}
$$

10. a) $25^{1 / 2}$
b) $125^{\frac{2}{3}}$
C) $(-64)^{\frac{3}{2}}$

$$
\begin{aligned}
& =(\sqrt{25})^{\prime} \\
& =(5)^{\prime} \\
& =5
\end{aligned}
$$

d) $-81^{\frac{3}{4}}$

$$
=-(\sqrt[4]{81})^{3}
$$

$$
=-(3)^{3}
$$

e) $\begin{aligned} & \left(\frac{8}{27}\right)^{\frac{-3}{2}} \\ = & \left(\frac{27}{8}\right)^{\frac{2}{3}}\end{aligned}$

$$
=-27
$$

$$
=\left(\sqrt[3]{\frac{27}{8}}\right)^{2}
$$

$$
=\left(\frac{3}{2}\right)^{2}
$$

$$
=\frac{9}{4}
$$

11. a) $\sqrt{17}$
b) $(\sqrt[6]{8})^{2}$
c) $\frac{1}{2 \sqrt{x}}$

$$
=17^{\frac{1}{2}}
$$

$$
=8^{\frac{2}{6}}
$$

$$
=\frac{1}{2 x^{\frac{1}{2}}}
$$

d)

$$
\begin{aligned}
& (\sqrt{x})^{4} \\
= & \left(x^{\frac{1}{2}}\right)^{4} \\
= & x^{\frac{4}{2}} \\
= & x^{2}
\end{aligned}
$$

$$
\text { e) }(\sqrt[4]{25})^{3}
$$

$$
=25^{\frac{3}{4}}
$$

12. The graph of $y=b^{x}$ represents exponential \square when $b>1$.
13. The graph of $y=b^{x}$ represents exponential \qquad When $0<b<1$.
14. $y=b^{x}$

Domain: $\{x \in R\}$
Range: $\{y \mid y>0, y \in R\}$

$$
y \text {-int: } y=1 \text { or }(0,1)
$$

Location of Horizontal Asymptote: $y=0$

$$
x-a \frac{O R}{x i s}
$$

15. a) $3^{4}=81$
b) $3^{-3}=\frac{1}{27}$

$$
\rightarrow \log _{3} 81=4
$$

$$
\rightarrow \log _{3}\left(\frac{1}{27}\right)=-3
$$

16. a) $\log _{3} 27=3$
b) $\log _{8} 2=\frac{1}{3}$
$\rightarrow 3^{3}=27$

$$
\rightarrow 8^{\frac{1}{3}}=2
$$

17. a) $\log _{3} x=5$

$$
3^{5}=x
$$

$$
243=\hat{x}
$$

$$
\text { b) } \begin{aligned}
& \log _{2}(x-3)=2 \\
& 2^{2}=x-3 \\
& 4=x-3 \\
& 4+3=x \\
& 7=x
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
& \log _{3}(-x+1)=6 \\
& 3^{6}=-x+1 \\
& 729=-x+1 \\
& 729-1=-x \\
& 728=-x \\
&-728=x
\end{aligned}
$$

18. a) $\log _{2} 8$
b) $\log _{5} \frac{1}{25}$
c) $\log _{\frac{1}{3}} \frac{1}{243}$

$$
\begin{aligned}
x & =\log _{2} 8 \\
2^{x} & =8 \\
2^{x} & =2^{3} \\
x & =3
\end{aligned}
$$

$$
x=\log _{5} \frac{1}{25}
$$

$$
5^{x}=\frac{1}{25}
$$

$$
x=\log _{\frac{1}{3}} \frac{1}{243}
$$

$$
5^{x}=\frac{25}{5^{2}}
$$

$$
\frac{1^{x}}{3}=\frac{1}{243}
$$

$$
5^{x}=5^{-2}
$$

$$
x=-2
$$

$$
\left(3^{-1}\right)^{x}=3^{-5}
$$

$$
3^{-1 x}=3^{-5}
$$

$$
\frac{-1 x}{-1}=\frac{-5}{-1}
$$

$$
x=5
$$

19.

$$
\text { 9. } \begin{aligned}
& 2 \log _{5} 3+\log _{5} 6-\log _{5} 27 \\
= & \log _{5} 3^{2}+\log _{5} 6-\log _{5} 27 \\
= & \log _{5} 9+\log _{5} 6-\log _{5} 27 \\
= & \log _{5}(9.6)-\log _{5} 27 \\
= & \log _{5} 54-\log _{5} 27 \\
= & \log _{5}\left(\frac{54}{27}\right) \\
= & \log _{5} 2
\end{aligned}
$$

20. $\frac{1}{2} \log _{2} 16+\log _{2} 8-\log _{2} 4$

Evaluate each term separately:

$$
\begin{array}{ccc}
\frac{1}{2} \log _{2} 16=x & \log _{2} 8=x & \log _{2} 4=x \\
\log _{2} 16^{1 \frac{1}{2}}=x & 2^{x}=8 & 2^{x}=4 \\
\log _{2} 4=x & 2^{x}=2^{3} & 2^{x}=2^{2} \\
2^{x}=4 & x=3 & x=2 \\
2^{x}=2^{2} & & \\
x=2 & &
\end{array}
$$

Therefore we have:

$$
=\begin{aligned}
& 2+3-2 \\
& =3-2 \\
& =3
\end{aligned}
$$

