1. A towrope is used to pull a 1750 kg car across a flat surface, giving it an acceleration of $1.35 \mathrm{~m} / \mathrm{s}^{2}$. What force does the rope exert? $(\mathrm{F}=2360 \mathrm{~N})$
2. A racing car undergoes a uniform acceleration of $4.00 \mathrm{~m} / \mathrm{s}^{2}$. If the net force causing the acceleration is 3000 N , what is the mass of the car? $(m=750 \mathrm{~kg})$
3. A 5.2 kg bowling ball is accelerated from rest to a velocity of $12 \mathrm{~m} / \mathrm{s}$ as the bowler covers 5.0 m of approach before releasing the ball. What force is exerted on the ball during this time? ($F=75 \mathrm{~N}$)
4. A high jumper falling at a $4.0 \mathrm{~m} / \mathrm{s}$ lands on foam pit and comes to rest compressing the pit 0.40 m . If the pit is able to exert an average force of 1200 N on the high jumper breaking the fall, what is the jumper's mass? ($\mathrm{m}=60 \mathrm{~kg}$)
5. When a 20 kg child steps off a 3.0 kg (initially) stationary skateboard with an acceleration of $0.50 \mathrm{~m} / \mathrm{s}^{2}$, with what acceleration will the skateboard travel in the opposite direction? - hint: apply Newton's third law ($a=3.3 \mathrm{~m} / \mathrm{s}^{2}$)
6. On Planet X , a 50 kg barbell can be lifted by only exerting a force of 180 N .
a. What is the acceleration of gravity on Planet X ? $\left(a=3.6 \mathrm{~m} / \mathrm{s}^{2}\right)$
b. What minimum force is needed to lift this barbell on Earth? ($F=490 \mathrm{~N}$)
7. An applied force of 20 N is needed to accelerate a 9.0 kg wagon at $2.0 \mathrm{~m} / \mathrm{s} 2$ along a sidewalk.
a. How large is the frictional force? $\left(F_{f}=2.0 \mathrm{~N}\right)$
b. What is the coefficient of friction? $(\mu=0.023)$
8. A 2.0 kg brick has a sliding coefficient of friction of 0.38 . What force must be applied to the brick for it to move at a constant velocity? ($\mathrm{F}_{\mathrm{a}}=7.5 \mathrm{~N}$)
9. In bench pressing 100 kg , a weight lifter applies a force of 1040 N . How large is the upward acceleration of the weights during the lift? $\left(a=0.59 \mathrm{~m} / \mathrm{s}^{2}\right)$
10. An elevator that weighs 3000 N is accelerated upward at $1.5 \mathrm{~m} / \mathrm{s}^{2}$. What force does the cable apply to give this acceleration? ($\mathrm{F}_{\mathrm{a}}=3460 \mathrm{~N}$)
