1. An 873 kg dragster, starting from rest, attains a speed of $26.3 \mathrm{~m} / \mathrm{s}$ in 0.59 s .
a. Find the average acceleration of the dragster during this time interval. $\left(a=44.6 \mathrm{~m} / \mathrm{s}^{2}\right)$
b. What is the size of the average force on the dragster during this time interval? ($F=38900 \mathrm{~N}$)
c. If the driver has a mass of 68 kg , what force does the seatbelt exert on the driver? ($F=3030 \mathrm{~N}$)
2. The downward acceleration of a karate chop is $-6500 \mathrm{~m} / \mathrm{s}^{2}$. If the mass of the forearm is 0.70 kg , what is the force exerted by the arm? $(\mathrm{F}=-4550 \mathrm{~N})$
3. A car with a mass of 1550 kg is driving on track initially going $10 \mathrm{~m} / \mathrm{s}$. The driver accelerates to $30 \mathrm{~m} / \mathrm{s}$ in 10 s . What is the average force acting on the car during that time? $(F=3100 \mathrm{~N})$
4. A car has a mass of 710 Kg . It starts from rest and travels 40 m in 3.0 s . What is the average force acting on the car assuming a uniform acceleration? ($F=6300 \mathrm{~N}$)
5. A force of -9000 N is used to stop a 1500 kg car traveling $20 \mathrm{~m} / \mathrm{s}$. What breaking distance is needed to bring the car to a halt? ($\mathrm{d}=33 \mathrm{~m}$)
6. A 65 kg diver jumps of a 10 m high platform.
a. Find the swimmer's velocity the instant he reaches the water. ($v=-14 \mathrm{~m}$)
b. The swimmer comes to a stop 2.0 m below the surface of the water. Calculate the net stopping force exerted by the water. ($\mathrm{F}=3200 \mathrm{~N}$)
7. A 5.0 kg remote controlled car is used in an experiment to determine the coefficient of friction between the car's tires and the floor. The car is driven at a uniform velocity and then the tires are locked. The car comes to rest in 3.2 m in a time of 1.7 s . Assuming the only force stopping the car is friction; calculate the coefficient of friction between the tires and the floor. ($\mu=0.23$)
