GRAPHING EXPONENTIAL FUNCTIONS

We are now going to examine the exponential function $\mathrm{y}=\mathrm{b}^{\mathrm{x}}$ and see how changing the value of \mathbf{b} affects the graphs of these functions.

Graphing exponential functions where $b>1$

Using a table of values, we are going to graph the following three functions on the same axis: $\quad y=2^{x}, y=5^{x}$, and $y=10^{x}$

Graphing exponential functions where $b>1$

Using a table of values, we are going to graph the following three functions on the same
axis: $\quad y=2^{x}, y=5^{x}$, and $y=10^{x}$
A. $y=2^{x}$
B. $y=5^{x}$
C. $y=10^{x}$

x	y
-5.0	0.03125
-4.0	0.0625
-3.0	0.125
-2.0	0.25
-1.0	0.5
0.0	1.0
1.0	2.0
2.0	4.0
3.0	8.0
4.0	16.0
5.0	32.0

x	y
-5.0	0.00032
-4.0	0.0016
-3.0	0.008
-2.0	0.04
-1.0	0.2
0.0	1.0
1.0	5.0
2.0	25.0
3.0	125.0
4.0	625.0
5.0	3125.0

x	y
-5.0	0.00001
-4.0	0.0001
-3.0	0.001
-2.0	0.01
-1.0	0.1
0.0	1.0
1.0	10.0
2.0	100.0
3.0	1000.0
4.0	10000.0
5.0	100000.

Exponential Growth: Each function is incteasing from left to right.

- The domain of these exponential functions is the set of all real numbers, $x \in \mathfrak{R}$.
- For $\mathrm{b}>1$, the function $\dot{\mathrm{y}}=\mathrm{b}^{\mathrm{x}}$ is increasing, that is, as x increases, y increases. These graphs represent exponential growth.

Each of these graphs pass through the point $(0,1)$, that is, the y-intercept is 1 .

- A horizontal asymptote is a horizontal line which the graph of the function approaches but never actually touches. The horizontal asymptote for all three
- of these graphs is the x -axis, whose equation is $\mathrm{y}=0$.
- The range of these functions are all values greater than $0, \mathrm{y}>0$.
- As the value of b increases, the graphs grow faster. The result is a graph that is closer to the y -axis, In the examples above, $\mathrm{y}=10^{\mathrm{x}}$ is the steepest graph.

Using a table of values, we are going to graph the following three functions on the same
axis: A. $y=\left(\frac{1}{2}\right)^{x}=2^{-x}$,
B. $y=\left(\frac{1}{4}\right)^{x}=4^{-x}$,
C. $y=\left(\frac{1}{7}\right)^{x}=T^{-x}$

x	y
-5.0	32
-4.0	16.0
-3.0	8.0
-2.0	4.0
-1.0	2.0
0.0	1.0
1.0	0.5
2.0	0.25
3.0	0.125
4.0	0.0625
5.0	0.03125

x	y
-5.0	1024
-4.0	256.0
-3.0	64.0
-2.0	16.0
-1.0	4.0
0.0	1.0
1.0	0.25
2.0	0.0625
3.0	0.0156
4.0	0.003
5.0	0.00098

x	y
-5.0	16807.0
-4.0	2401.0
-3.0	343.0
-2.0	49.0
-1.0	7.0
0.0	1.0
1.0	0.143
2.0	0.020
3.0	0.003
4.0	0.0004
5.0	0.00006

Exponential Decay: Each function is decreasing from left to right.

- The domain of these exponential functions is the set of all real numbers, $x \in \Re$.
- The range of these functions are all values greater thari $0, \mathrm{y}>0$.
- For $0<b<1$, the function $\mathrm{y}=\mathrm{b}^{\mathrm{x}}$ is decreasing, that is, as x increases, y decreases. These graphs represent exponential decay.
- Each of these graphs pass through the point $(0,1)$, that is, the y-intercept is 1 .
- A horizontal asymptote is a horizontal line which the graph of the function approaches but never actually touches. The horizontal asymptote for all three of these graphs is the x -axis, whose equation is $\mathrm{y}=0$.
- As the value of b decreases, the graphs decay faster. The result is a graph that is closer to the y -axis. In the examples above, $\mathrm{y}=\left(\frac{1}{7}\right)^{x}$ is the steepest graph.

It should be noted that the graph of $y=1^{x}$ is a horizontal line passing through the y-axis at $\mathrm{y}=1$. This is true, since no matter what the x value is, $1^{\mathrm{x}}=1$. As we have seen in the two examples above, as the base b gets larger than 1 , the graph rises from left to right. And, as the value of b gets smaller than 1 , the graph falls from left to right.

