GRAPHING EXPONENTIAL FUNCTIONS

We are now going to examine the exponential function $y = b^x$ and see how changing the value of b affects the graphs of these functions.

Graphing exponential functions where b>1

Using a table of values, we are going to graph the following three functions on the same axis: $y = 2^x$, $y = 5^x$, and $y = 10^x$

Graphing exponential functions where b>1

Using a table of values, we are going to graph the following three functions on the same axis: $y = 2^x$, $y = 5^x$, and $y = 10^x$

A. $y = 2^x$		B. $y = 5^x$		C. $y = 10^x$	
x	У	x	у	x	у
-5.0	0.03125	-5.0	0.00032	-5.0	0.00001
-4.0	0.0625	-4.0	0.0016	-4.0	0.0001
-3.0	0.125	-3.0	0.008	-3.0	0.001
-2.0	0.25	-2.0	0.04	-2.0	0.01
-1.0	0.5	-1.0	0.2	-1.0	0.1
0.0	1.0	0.0	1.0	0.0	<u>1</u> .0
1.0	2.0	1.0	5.0	1.0	10.0
2.0	4.0	2.0	25.0	2.0	100.0
3.0	8.0	3.0	125.0	3.0	1000.0
	16.0	4.0	625.0	4.0	10000.0
	32.0	5.0	3125.0	5.0	100000.
	-C.B.A				

Exponential Growth: Each function is increasing from left to right.

- The domain of these exponential functions is the set of all real numbers, $x \in \Re$.
- For b > 1, the function y = b^x is increasing, that is, as x increases, y increases. These graphs represent exponential growth.
 Each of these graphs pass through the point (0, 1), that is, the y-intercept is 1.
- A horizontal asymptote is a horizontal line which the graph of the function approaches but never actually touches. The horizontal asymptote for all three
- of these graphs is the x-axis, whose equation is y = 0.
- The range of these functions are all values greater than 0, y > 0.
- As the value of b increases, the graphs grow faster. The result is a graph that is closer to the y-axis. In the examples above, y = 10^x is the steepest graph.

Graphing exponential functions where 0 < b < 1

B

Using a table of values, we are going to graph the following three functions on the same

axis: A. $y = \left(\frac{1}{2}\right)^{x} = 2^{-x}$,	$B. y = \left(\frac{1}{4}\right)^x = 4^{-x},$	C. $y = \left(\frac{1}{7}\right)^x = 7^x$
--	--	---

x	l y	x	у	x	У
-5.0	32	-5.0	1024	-5.0	16807.0
-4.0	16.0	-4.0	256.0	-4.0	2401.0
-3.0	8.0	-3.0	64.0	-3.0	343.0
-2.0	4.0	-2.0	16.0	-2.0	49.0
-1.0	2.0	-1.0	4.0	-1.0	. 7.0
0.0	1.0	0.0	1.0	0.0	1.0
1.0	0.5	1.0	0.25	1.0	0.143
2.0	0.25	2.0	0.0625	2.0	0.020
3.0	0.125	3.0	0.0156	3.0	0.003
4.0	0.0625	4.0	0.003	4.0	0.0004
5.0	0.03125	5.0	0.00098	5.0	0.00006
	L N N N N		1	1	

Exponential Decay: Each function is decreasing from left to right.

- The domain of these exponential functions is the set of all real numbers, $x \in \Re$.
- The range of these functions are all values greater than 0, y > 0.
- For 0 < b < 1, the function y = b^x is decreasing, that is, as x increases, y decreases. These graphs represent exponential decay.
- Each of these graphs pass through the point (0, 1), that is, the y-intercept is 1.
- A horizontal asymptote is a horizontal line which the graph of the function approaches but never actually touches. The horizontal asymptote for all three of these graphs is the x-axis, whose equation is y = 0.
- As the value of b decreases, the graphs decay faster. The result is a graph that is

closer to the y-axis. In the examples above,
$$y = \left(\frac{1}{7}\right)^{x}$$
 is the steepest graph.

It should be noted that the graph of $y = 1^x$ is a horizontal line passing through the y-axis at y = 1. This is true, since no matter what the x value is, $1^x = 1$. As we have seen in the two examples above, as the base b gets larger than 1, the graph rises from left to right. And, as the value of b gets smaller than 1, the graph falls from left to right.