LAWS OF LOGARITHMS

There are four laws of logarithms that we are going to investigate in this section. These laws are going to enable us to solve equations that we cannot solve as yet.
In looking at these laws, it is a good idea to remember that logarithms are exponents.
Because of this fact, the basis of these laws are grounded in the rules of exponents.

The proofs of these laws will not be given here.

Law \# 1: The Logarithm of a Product

The \log of a product to any base is equal to the sum of the logs of the factors of that product.

```
loga}(mn)= \mp@subsup{\operatorname{log}}{a}{}m+\mp@subsup{\operatorname{log}}{a}{}
    T
Base
```

Thus: $\quad \log _{5} 45=\log _{5} 9+\log _{5} 5$
Also: $\quad \log _{5} 45=\log _{5} 15+\log _{5} 3$ and $\quad \log _{5} 45=\log _{5} 90+\log _{5} \frac{1}{2}$

This law applies to any number of factors.

$$
\begin{aligned}
& \log _{6} 72=\log _{6} 2+\log _{6} 2+\log _{6} 3+\log _{6} 3+\log _{6} 2 \\
& \log _{a}(x y z)=\log _{a} x+\log _{a} y+\log _{a} z
\end{aligned}
$$

Law \# 2: The Logarithm of a Quotient

The log of a quotient to any base is equal to the difference of the logs of the factors of that quotient.
$\log _{\mathrm{a}}\left(\frac{m}{n}\right)=\log _{\mathrm{a}} \mathrm{m}-\log _{\mathrm{a}} \mathrm{n}$.

Thus: $\log _{3}(24)=\log _{3} 48-\log _{3} 2$

$$
\log _{3}(24)=\log _{3} 72-\log _{3} 3
$$

$$
\log _{3}(24)=\log _{3} 96-\log _{3} 2-\log _{3} 2
$$

$$
\begin{aligned}
& \text { since } 48 / 2=24 \\
& \text { since } 72 / 3=24 \\
& \text { since } 96 / 2=48 / 2=24
\end{aligned}
$$

Examples:

1. $\log \frac{x y z}{a b}=\log x+\log y+\log z-\log a-\log b \quad$ The logs of the factors \mathbf{x}, \mathbf{y}; and \mathbf{z} are added since they are in the numerator (multiplied) of the fraction. The logs of the factors \mathbf{a} and \mathbf{b} are subtracted since they are in the denominator (divided) of the fraction.
2. $\log \frac{5 c d}{12 x y}=\log 5+\log c+\log d-\log 12-\log x-\log y$

Law \# 3 The Logarithm of a Power

The logarithm of a base raised to any power is equivalent to multiplying the exponent by the logarithm of the base.

$$
\log _{a} b^{x}=x\left(\log _{a} b\right)
$$

Thus: $\quad \log _{7} 12^{5}=5\left(\log _{7} 12\right)$

$$
\log _{7}[(12)(12)(12)(12)(12)]
$$

$$
\log _{7} 12+\log _{7} 12+\ldots
$$

Law \# 4 The Logarithm of a Root

This law is really an extension of Law \# 3. Recall from earlier work that expressions with exponents that are rational numbers can be equivalently written as radicals.

$$
15^{\frac{2}{3}}=(\sqrt[3]{15})^{2}
$$

So, we can write: $\quad \log (\sqrt[3]{15})^{2}=\log 15^{\frac{2}{3}}=\frac{2}{3} \log 15$ (The base is 10 !)

EVALUATING LOGARITHMS USING THE LAWS OF LOGARITHMS

Examples:

Evaluate the following expressions.

1. $\log _{5} 100+\log _{5}\left(\frac{1}{4}\right)$

By Law \# 1, we can write this as: $\log _{5}\left(100 \cdot \frac{1}{4}\right)=\log _{5} 25$
In the last section we learned how to evaluate $\log _{5} 25: \quad \mathrm{x}=\log _{5} 25$

$$
5^{x}=25=5^{2}
$$

Thus: $\quad \mathbf{x}=\mathbf{2}$
2. $\log _{2} 384-\log _{2} 12$

By Law \# 2, we can write this as: $\quad \log _{2}\left(\frac{384}{12}\right)=\log _{2} 32$
And:

$$
x=\log _{2} 32
$$

$$
2^{x}=32=2^{5} \quad \text { Thus: } x=5
$$

3. $\quad \log _{7} 49^{5}$

$$
\begin{aligned}
& \begin{aligned}
\text { From Law \# 3: } \quad \log _{7} 49^{5} & =5\left(\log _{7} 49\right) \longrightarrow \text { Now: } \log _{7} 49=2 \\
& =5(2) \\
\text { Therefore: } &
\end{aligned} \quad 10
\end{aligned}
$$

4. $\log _{3} \sqrt[5]{27}$

By Law \# 4, we can write this as: $\log _{3} 27^{\frac{1}{5}}$
Which equals: $\quad \frac{1}{5} \log _{3} 27$
And since $\log _{3} 27=3: \quad \frac{1}{5} \cdot 3=\frac{3}{5}$

Write each expression as a single logarithm.
5. $\quad \log \mathrm{A}+\log \mathrm{B}-\log \mathrm{C}+\log \mathrm{D}-\log \mathrm{E}$

The plus signs indicate multiplication, and the minus signs indicate division.

$$
\log \frac{A B D}{C E}
$$

6. $\quad \log A+\log B-(\log C-\log D)$

Simplify first: $\quad \log A+\log B-\log C+\log D$
$\log \frac{A B D}{C}$
7. $\log _{4} w-3 \log _{4} y+\frac{2}{3} \log _{4} \mathrm{z}$
$\log _{4} \frac{\left(w z^{\frac{2}{3}}\right)}{y^{3}}$

