ANSWERS
pg. 118
32. The situations that could produce an exponential graph are:
a) The pyramid scam
d) The decay of Carbon-14.
pg. 135
26. There are three possible functions:

1) The value increases by a factor of 1.2 every year $\rightarrow y=5(1.2)^{x}$
2) The value increases by a factor of 3 every six years $\rightarrow y=5(3)^{\frac{x}{6}}$
3) The value increases by a factor of 9 every twelve years $\rightarrow y=5(9)^{\frac{x_{2}^{2}}{2}}$.
27. The initial value $1.85(a)$; doubles $(b=2)$; every 5 years $(c=5)$.
Equation: $y=a b^{\frac{x}{c}}$

$$
\begin{aligned}
& \text { Equation: } y=a b \\
& \quad y=1.85(2)^{\frac{x}{5}} \\
& \text { In 2022 }(x=27) \quad \text { In 2022, the } \\
& y=1.85(2)^{\frac{20}{5}} \text { (ar will be } \\
& y=\$ 78.11 \text { Worth } 178.11 .
\end{aligned}
$$

28. $P=4.22(2)^{\frac{t}{16}}$

Using the written description only, the initial value in $1990(t=0)$ is 4.22 ; the population doubled (2); the doubling occurred after 16 years.
29.

Initial value $\rightarrow 300$ (a)
Population doubled $\rightarrow 2(b)$
15 minutes to double $\rightarrow 15$ (c)

$$
\begin{array}{cc}
y=a b^{\frac{x}{c}} & \\
y=300(2)^{\frac{x}{15}} & y^{15}=300(2)^{4 x} \\
\text { Chester's Answer } & \text { Rosalee's Answer } \\
\text { (in minutes) } & \text { (in hours) }
\end{array}
$$

The 2 functions have the same base ($b=2$) because the population is doubling, and they have the same initial value $(a=300)$ because regardless of the units of time, the initial population for the bacteria is $300 / \mathrm{mm}^{2}$.

- Chester needed the resulting exponent to be 1 When he substituted 15 min for x.
This could only be achieved by using an exponent of $\frac{2}{15}$. in his function.
- Rosalee needed the resulting exponent to be I when she substituted $\frac{1}{4}$ for x. This could only be achieved by using an exponent of $4 x$ in her function
\rightarrow Therefore, both students are correct!
pg. 136

31. $P=300(2)^{\frac{t}{20}}$
a) The initial concentration of bacteria was 300 bacteria $/ \mathrm{cm}^{2}$.
b) It takes 20 min for the concentration to double.
c)

$$
\begin{array}{rl}
P & =300(2)^{\frac{t}{20}} \\
I_{n} & 50 \mathrm{~min}: \\
P & =300(2)^{\frac{50}{20}} \\
& =300(2)^{2.5} \\
& =1697 \text { bacteria } / \mathrm{cm}^{2}
\end{array}
$$

Pg. 137
34
34. Initial amount of carbon -14 $\rightarrow 2.8 \mathrm{mg}$ (a) Decays to half its original mass $\rightarrow 1 / 2(b)$ 5750 years to decay by half $\rightarrow 5750$ (c)
a) Equation: $\begin{aligned} y & =a b^{\frac{v}{f}} \\ y & =2.8(1 / 2)^{\frac{x}{5150}} \quad \text { OR } y=2.8(1 / 2)^{\frac{t}{5750}}\end{aligned}$
b) If the skull were 12000 years old:

$$
\begin{aligned}
y & =2.8(1 / 2)^{\frac{13060}{5750}} \\
& =0.66 \mathrm{mg} .
\end{aligned}
$$

35. Initial amount of investment $\rightarrow \$ 1000$ (a) Investment doubles $\rightarrow 2$ (b) Doubling time $\rightarrow 8$ (c)

$$
\begin{aligned}
\text { Equation: } y & =a b^{\frac{x}{c}} \\
y & =1000(2)^{\frac{x}{8}}
\end{aligned}
$$

Therefore, after 4 years: $y=1000(2)^{\frac{4}{8}}$

$$
\begin{aligned}
& y=1000(2)^{1 / 2} \\
& y=\$ 1414.21
\end{aligned}
$$

Jim's assumption was wrong because after 4 years his investment will be worth \$ 1414.21 .
36. Initial population $\rightarrow 3500$

After 2 days $\rightarrow 2200$

$$
\begin{aligned}
\text { Common Ratio } & =\frac{2200}{3500} \\
& =0.6286
\end{aligned}
$$

a) Equation: $\begin{aligned} y & =a b^{\frac{x}{c}} \\ y & =3500(0.6286)^{\frac{x}{2}}\end{aligned}$
b) After 4 days: $y=3500(0.6286)^{\frac{x}{2}}$

$$
\begin{aligned}
& y=3500(0.6286)^{\frac{4}{2}} \\
& y=3500(0.6286)^{2}
\end{aligned}
$$

OR Without the equation:

$$
y=1383 \text { frogs }
$$

$\begin{array}{ll}\text { Day } 0 & 3500 \text { frogs }) \times 0.6286\end{array}$
Day 22200 frogs 2×0.6286
Day $4 \widetilde{1383}$ frogs 2×0.6286
c) After 7 days: $y=3500(0.6286)^{\frac{1}{2}}$ $y=689$ frogs.

