Finding Speed from a Graph \leadsto ANSWERS
a)

$$
\begin{aligned}
(0,0) & (8,10) \\
\text { Speed }_{A B} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{10-0}{8-0} \\
& =\frac{10}{8} \\
& =\frac{1.25 \mathrm{Km}}{\mathrm{~min}} \times \frac{60 \mathrm{~min}}{1 \mathrm{hr}} \\
& =75 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } B \text { to } C \\
& (8,10)(18,35)
\end{aligned}
$$

$$
\text { Speed }_{B C}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
=\frac{35-10}{18-8}
$$

$$
=\frac{25}{10}
$$

$$
=\frac{2.5 \mathrm{~km}}{\mathrm{~min}} \times \frac{60 \mathrm{~min}}{1 \mathrm{hr}}
$$

$$
=150 \mathrm{~km} / \mathrm{h}
$$

c) C to D

$$
(18,35)(28,45)
$$

Speed $=$

$$
d_{c D}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
=\frac{45-35}{28-18}
$$

$$
=\frac{10}{10}
$$

$$
=\frac{1 \mathrm{Km}}{\mathrm{~min}} \times \frac{60 \mathrm{~min}}{1 \mathrm{hr}}
$$

$$
=60 \mathrm{~km} / \mathrm{h} \quad=150 \mathrm{~km} / \mathrm{h}
$$

e) Eto F

$$
(36,65) \quad(48,70)
$$

$$
\begin{aligned}
\text { Speed } & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{70-65}{48-36} \\
& =\frac{5}{12}
\end{aligned}
$$

f) $\underset{(48,70)}{\text { F to }} G(56,70)$

$$
\begin{aligned}
\text { Speed }_{F G} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{70-70}{56-48} \\
& =\frac{0}{8} \\
& =\frac{0 \mathrm{~km}}{\mathrm{~min}} \\
& =0 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

A) Average Speed for entire trip.

$$
(A \rightarrow G)
$$

$$
(0,0) \quad(56,70)
$$

$$
\begin{aligned}
\begin{aligned}
\text { Average } & =\frac{y_{2}-y_{1}}{\text { Speed }_{\text {Ae }}}
\end{aligned} & =\frac{70-x_{1}}{56-0} \\
& =\frac{70}{56} \\
& =1.25 \frac{\mathrm{~km}}{\mathrm{~min}}
\end{aligned}
$$

$$
\Rightarrow 75 \mathrm{~km} / \mathrm{h}
$$

Average Rate of Change from Graphs.
(1)

$$
\begin{aligned}
& \text { a) } \begin{aligned}
&(1,1)=1 \text { to } \quad x=4 \\
&(4,7 \\
& \text { AROC }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
&=\frac{7-1}{4-1} \\
&=\frac{6}{3} \\
&=2
\end{aligned}
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
& x=2 \text { to } x=5 \\
& (2,3) \quad(5,9)
\end{aligned}
$$

$$
A R O C=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
=\frac{9-3}{5-2}
$$

$$
=\frac{6}{3}
$$

$$
=2
$$

2a) $x=3$ to $x=5$

$$
\begin{aligned}
(3,0) & (5,8) \\
A R O C & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{8-0}{5-3} \\
& =\frac{8}{2} \\
& =4
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
& x=2 \\
&(2,-1) \text { to } x=0 \\
&(0,3)
\end{aligned}
$$

$$
\begin{aligned}
\text { AROC } & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{3-(-1)}{0-2} \\
& =\frac{4}{-2} \\
& =-2
\end{aligned}
$$

3a) $x=-4$ to $x=-2$
$(-4,-4) \quad(-2,1)$

$$
\begin{aligned}
A R O C & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{1-(-4)}{-2-(-4)} \\
& =\frac{5}{2} \\
& =2.5
\end{aligned}
$$

$$
\begin{array}{ll}
\text { b) } \begin{array}{l}
x=0 \\
(0,4)
\end{array} \quad \text { to } \quad x=4 \\
(4,4)
\end{array}
$$

$$
\begin{aligned}
A R O C & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{4-4}{4-0} \\
& =\frac{0}{4} \\
& =0
\end{aligned}
$$

4. a) $x=0$ to $x=2$

$$
(0,1) \quad(2,4)
$$

$$
\text { b) } x=1 \text { to } x=3
$$

$$
\begin{aligned}
A R O C & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{4-1}{2-0} \\
& =\frac{3}{2} \\
& =1.5
\end{aligned}
$$

$$
\begin{aligned}
A R O C & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{8-2}{3-1} \\
& =\frac{6}{2} \\
& =3
\end{aligned}
$$

5.

$$
\begin{aligned}
& \text { a) } x=3 \text { to } x=0 \\
& (3,-6) \quad(0,-3) \\
& \text { AROn }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-3-(-6)}{0-3} \\
& =\frac{3}{-3} \\
& =-1 \\
& \text { b) } \\
& x=2 \text { to } x=-2 \\
& \text { (} 2,-5 \text {) }(-2,-1) \\
& A R O C=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& \text { CONSTANT }=\frac{-1-(-5)}{-2-2} \\
& \stackrel{\text { NEAR GRAPH }}{ }=\frac{4}{-4} \\
& \text { LINEAR GRAPH } \\
& \searrow=-1
\end{aligned}
$$

6.

$$
\begin{aligned}
& x=-2 \text { to } x=3 \\
& (-2,2) \quad(3,2) \\
& \begin{aligned}
\text { AROC } & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{2-2}{3-(-2)} \\
& =\frac{0}{5} \\
& =0
\end{aligned}
\end{aligned}
$$

(CONSTANT!)
7. $x=2$ to $x=2$

* Pick any 2 points

Example: $(2,0)$ and $(2,2)$

$$
\begin{aligned}
\text { ARC } & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{2-0}{2-2} \\
& =\frac{2}{0}
\end{aligned}
$$

Undefined!
(cannot divide by 0)

