SOLUTIONS \Rightarrow EXERCISE 7

1. $\{(-1,5),(0,12),(1,18)\}$

Inverse: $\{(5,-1),(12,0),(18,1)\}$

$$
2\{(2,9),(4,16),(6,16),(15,19)\}
$$

Inverse: $\{(9,2),(16,4),(16,6),(19,15)\}$
3. $y=x+4$

Inverse: $x=y+4$
Solve for $y:$
Solve for y :

$$
x-4=y \text { or } y=x-4
$$

4. $y=7 x+15$

Inverse: $x=7 y+15$
Solve for y : $\frac{x-15}{7}=\frac{x y}{7}$

$$
\frac{x-15}{7}=y
$$

5. $y=\frac{2}{5} x+7$

Inverse: $x=\frac{2}{5} y+7$
Solve for $y: x-7=\frac{2}{5} y$

$$
\begin{aligned}
& \frac{5}{2}(x-7)=y \\
& \frac{5}{2} x-\frac{35}{2}=y \quad \text { OR } \quad \frac{5 x-35}{2}=y
\end{aligned}
$$

6. Inverse Functions
7. Not Inverse Function
8. Inverse Functions.
9. Inverse Functions.
10.

$$
\begin{aligned}
& 125=5^{3} \\
& 8=2^{3} \\
& \left(\frac{1}{49}\right)=7^{-2} \\
& 12^{-1}=\left(\frac{1}{12}\right) \\
& 16^{\frac{1}{2}}=4 \\
& 45^{0}=1 \\
& 64^{-\frac{1}{3}}=\frac{1}{4}
\end{aligned}
$$

Logarithmic Form

$$
\begin{aligned}
& 3=\log _{5} 125 \\
& 3=\log _{2} 8 \\
& -2=\log _{7}\left(\frac{1}{49}\right) \\
& -1=\log _{12}\left(\frac{1}{12}\right) \\
& \left(\frac{1}{2}\right)=\log _{16} 4 \\
& 0=\log _{45} 1 \\
& \left(\frac{-1}{3}\right)=\log _{64} \frac{1}{4}
\end{aligned}
$$

$11 . \Rightarrow \log 1000$ "Same as" $\log _{10} 1000$

$$
\begin{aligned}
& \log _{10} 1000 \\
& x=\log _{10} 1000 \\
& 10^{x}=1000 \\
& 10^{x}=10^{3} \\
& x=3
\end{aligned}
$$

12.

$$
\begin{array}{lll}
\log _{3} 27 & 13 . \log _{3} 625 & \mathrm{IH} . \log _{121} 1 \\
x==\log _{3} 27 & x=\log _{5} 625 & x=\log _{121} 1 \\
3^{x} x=29^{3} & 5 x=625 & \mid 21=11 \\
3^{x}=3^{3} & 5 x=5^{4} & 121 x=121^{\circ} \\
x=3 & x=1^{2} & x=0
\end{array}
$$

15.

$$
\begin{array}{lll}
\log _{5}\left(\frac{1}{2^{5}}\right) & 16 \cdot \log _{5} 5 & 17 \cdot \log _{2}\left(\frac{1}{8}\right) \\
x=\log _{5}\left(\frac{1}{25}\right) & x=\log _{5} 5 & x=\log _{2}\left(\frac{1}{8}\right) \\
5^{x}=\frac{1}{25} & 5^{x}=5 & 2^{x}=\frac{1}{8} \\
5^{x}=\frac{1}{5^{2}} & x=1 & 2^{x}=\frac{1}{2^{3}} \\
5^{x}=5^{-2} & & 2^{x}=2^{-3} \\
x=-2 & & x=-3
\end{array}
$$

18.

$$
\begin{array}{cc}
\log _{\frac{1}{5}}(125) & 19 \log _{\frac{1}{3}}\left(\frac{1}{81}\right) \\
x=\log _{\frac{1}{5}}(125) & x=\log _{\frac{1}{3}}\left(\frac{1}{81}\right) \\
\frac{1}{5}^{x}=125 & \frac{1}{3}^{x}=\frac{1}{81} \\
\left(5^{-1}\right)^{x}=\left(5^{3}\right) & \frac{1}{3}^{x}=\frac{1}{3^{4}} \\
5^{-1 x}=5 & \left.\left(3^{-1}\right)^{x}=3^{-4}\right) \\
\frac{-x x}{-1}=\frac{3}{-1} & 3^{-1 x}=3^{-4} \\
x=-3 & \frac{-x x}{-x}=\frac{-4}{-1} \\
& x=4
\end{array}
$$

20. $\log _{3} x=4 \quad<$-hogarithmic Form $3^{4}=x \quad$ Exponential Form
$81=x$
21. $\log _{5} x=-2$

$$
\begin{aligned}
& 5^{-2}=x \\
& \frac{1}{5^{2}}=x \\
& \frac{1}{25}=x
\end{aligned}
$$

22.

$$
\begin{aligned}
& \log _{x} 81=\frac{4}{3} \\
& x^{\frac{4}{3}}=81 \\
& \left(x^{\frac{4}{3}}\right)^{\frac{3}{4}}=81^{\frac{3}{4}} \\
& x=81^{\frac{3}{4}} \\
& x=(\sqrt[4]{81})^{3} \\
& x=(3)^{3} \\
& x=27
\end{aligned}
$$

$$
\text { 23. } \log _{x} 36=\frac{2}{5}
$$

$$
x^{\frac{2}{5}}=36
$$

$$
\left(x^{\frac{2}{5}}\right)^{\frac{5}{2}}=36^{\frac{5}{2}}
$$

$$
x=36^{\frac{5}{2}}
$$

$$
x=(\sqrt{36})^{5}
$$

$$
x=(6)^{5}
$$

$$
x=7776
$$

$$
\begin{aligned}
& \text { 24. } \log _{x}\left(\frac{81}{16}\right)=\frac{4}{5} \\
& x^{\frac{4}{5}}=\frac{81}{16} \\
& \left(x^{\frac{4}{5}}\right)^{\frac{5}{4}}=\left(\frac{81}{16}\right)^{\frac{5}{4}} \\
& x=\left(\frac{81}{16}\right)^{\frac{5}{4}} \\
& x=\left(\sqrt[4]{\frac{81}{16}}\right)^{5} \\
& x=\left(\frac{3}{2}\right)^{5} \\
& x=\frac{243}{32}
\end{aligned}
$$

25

$$
\begin{array}{ll}
\text { 5. } \log _{x}\left(\frac{1}{25}\right)=-2 & \text { 26. } \log _{x}\left(\frac{32}{243}\right)=\frac{5}{2} \\
x^{-2}=\frac{1}{25} & x^{\frac{5}{2}}=\frac{32}{243} \\
\left(x^{-2}\right)^{-1 / 2}=\left(\frac{1}{25}\right)^{-1 / 2} & \left(x^{\frac{5}{2}}\right)^{\frac{2}{5}}=\left(\frac{32}{243}\right)^{\frac{2}{5}} \\
x=\left(\frac{1}{25}\right)^{-1 / 2} & x=\left(\frac{32}{243}\right)^{\frac{2}{5}} \\
x=(25)^{1 / 2} & x=\left(\sqrt[5]{\frac{32}{243}}\right)^{2} \\
x=(\sqrt{25})^{1} & x=\left(\frac{2}{3}\right)^{2} \\
x=(5)^{\prime} & x=\frac{4}{9} \\
x=5 &
\end{array}
$$

