Waves

- ⇒ A wave is a transfer of energy, in a form of a disturbance usually through a material substance, or medium.
 - ⇒ Electromagnetic Waves

 - ⇒ Pressure waves
- ⇒ When objects repeat a pattern of motion (e.g. a pendulum), we say that object is vibrating or oscillating. (wiimote demo)
 - The oscillation is repeated over and over with the same time interval each time.
 - ⇒ One complete oscillation is called a cycle.
 - The number of cycles per second is called the <u>frequency</u>, **f**. The frequency is measured in Hertz (Hz).

The <u>period</u>, T, usually measured in seconds, is the time required for one cycle. The frequency and period are reciprocals of each other.

Examples

1. A pendulum completes 30 cycles in 15 seconds. Calculate its frequency and period.

$$f = \frac{\# \text{cycles}}{+ \text{ime}} = \frac{30}{15s} = \boxed{2H_2}$$

$$-\frac{+\text{me}}{-\text{cycles}} = \frac{15s}{30} = \boxed{0.5s}$$

$$T = \frac{t_{ime}}{\#waves} = \frac{60s}{30} = 2s$$

$$8b) T = \frac{1}{\text{me}} = \frac{85}{2048}$$

$$(9 c) 2.50 \times 10^{-2}$$

 $f = \frac{1}{7} = \frac{1}{2.5 \times 10^{-2}} = 40 \text{ Hz}$

Transverse Waves

- The particles in the medium vibrate at right angles to the direction in which the wave travels.
 - □ The high section is called the crest, and the low section is called the trough.
 - □ The height of the crest or depth of the trough, from the equilibrium position is called the amplitude.
 - For periodic waves, the distance between successive crests and troughs is equal and is called the wavelength. The symbol for the wavelength is the Greek letter lambda, λ .
 - ⇒ The period of a transverse wave is the time it takes for one wavelength (one cycle) to pass a fixed point.
 - ⇒ The frequency is the number of wavelengths that passed a fixed point in one second.
 - ⇒ Examples include water waves and making vibrations on a rope.

library.thinkquest.org/. ../Waves/basic.htm

Longitudinal Waves

- ⇒ The vibrations of the particles are parallel to the direction of motion.
 - □ There are a compressions and rarefactions created in longitudinal waves.
 - ⇒ One wavelength is the distance between the midpoints of successive compressions or rarefactions.
 - ⇒ The amplitude is the maximum displacement of the particles from their rest position. Amplitude is a measure of the wave's energy.

- ⇒ The period of a longitudinal wave is the time it takes for one wavelength (one cycle) to pass a fixed point.
- ⇒ The frequency is the number of wavelengths that passed a fixed point in one second.
- ⇒ Sound waves, pressure waves are examples.

www.christian81.free-online.co.uk

Transmission of Waves

⇒ When a wave is generated in a spring or a rope, the wave travels a distance of one

wavelength, λ , along the rope in the time required for one complete vibration of the source (the period). We can use the formula for velocity to derive the wave equation:

$$velocity, v = \frac{change \ in \ position, \ \Delta d}{change \ in \ time, \ \Delta t}$$
 and
$$\Delta d = \lambda, \ and \ \Delta t = T$$
 therefore
$$v = \frac{\lambda}{T} \leftarrow$$

$$f = \frac{1}{T}$$
 Therefore
$$v = f\lambda \leftarrow$$

 \Rightarrow The wave equation, $v = f\lambda$, applies to all waves, visible and invisible.

Examples

1. The wavelength of a water wave in a ripple tank is 0.080 m. If the frequency of the wave is 2.5 Hz, what is its speed?

$$\sqrt{-2} + \lambda$$

= $(2.5)(0.080)$
= $0.2 \frac{9}{2}$
 $P_{e} 17 # 1-24 P_{e} 22 - 7 answers.$

2. The distance between successive crests in a series of water waves is 4.0 m, and the crests travel 9.0 m in 4.5 s. What is the frequency of the waves?

$$\lambda = 4.0 \text{m}$$
 $V = \Delta d$
 Δt
 $\Delta d = 9.0 \text{m}$
 $\Delta t = 4.5 \text{s}$
 $\Delta t = 4.5 \text{s}$