Motion Equations

Remember that everything is a vector (sign of the variable depends on its direction) except time and that the change in time can never be negative!

Kinematics - Mathematical Analysis & Projectile Motion

Symbol	Quantity (Unit) Symbol		Quantity (Unit)	Symbol	Quantity (Unit)
$\Delta \vec{x}$	Horizontal displacement (m)	\vec{v}_{fx}	Final velocity x-direction (m/s)	$ec{g}$	9.81 (m/s²; surface of the Earth)
$\Delta \vec{y}$	Vertical displacement (m)	\vec{v}_{fy}	Final velocity y-direction (m/s)	\vec{g}_x	x-component of g
\vec{x}_o	Initial horizontal position (m)	\vec{v}_{avg}	Average velocity (m/s)	$ec{g}_{\mathcal{Y}}$	y-component of g
\vec{y}_o	Initial vertical position (m)	\vec{v}	Velocity (m/s)	t	time (s; refers to a time interval)
\vec{x}_f	Final horizontal position (m)	$ \vec{v} $	Velocity magnitude (m/s)	θ	Angle (degrees, °)
\vec{y}_f	Final vertical position (m)	v_x	x-component velocity (m/s)	Δ	Change in (final - initial)
\vec{v}_f	Final velocity (m/s)	v_y	y-component velocity (m/s)		
\vec{v}_o	Initial velocity (m/s)	$ \vec{a} $	Acceleration magnitude (m/s²)		
\vec{v}_{ox}	Initial velocity x-direction (m/s)	\vec{a}_x	x-component acceleration (m/s²)		
\vec{v}_{oy}	Initial velocity y-direction (m/s)	\vec{a}_y	y-component accelerations (m/s²)		

$\vec{v}_{avg} = \frac{\Delta \vec{x}}{t}$	$\Delta \vec{x} = \vec{v}_{ox}t + \frac{1}{2}\vec{a}_x t^2$	$\Delta \vec{y} = \vec{v}_{oy}t + \frac{1}{2}\vec{a}_y t^2$	$v_{fy}^2 = v_{oy}^2 + 2a_y \Delta \vec{y}$	$v_{oy} = v \sin \theta$	$ \vec{v} = \sqrt{v_{fx}^2 + v_{fy}^2}$
$\vec{v}_{avg} = \frac{v_f + v_o}{2}$	$\vec{a} = \frac{\vec{v}_f - \vec{v}_o}{t}$	$v_{fx}^2 = v_{ox}^2 + 2a_x \Delta \vec{x}$	$v_{ox} = v \cos \theta$	$\theta = \tan^{-1} \left \frac{v_y}{v_x} \right $	

Dynamics - Forces, Impulse, Torque, Momentum, & Circular Motion*

Symbol	Quantity (Unit)	Symbol	Quantity (Unit)	Symbol	Quantity (Unit)
\vec{F}_{net}	Net force (N)	\vec{F}_T	Force of Tension (N)	Ī	Impulse (N·s)
\vec{F}_A	Force applied (N)	\vec{F}_N	Normal Force (N)	\vec{p}	Momentum (kg·m/s)
$\vec{F_g}$	Force of gravity (N)	$\vec{F_c}$	Centripetal Force (N)	\vec{p}_{oT}	Initial total momentums (kg·m/s)
\vec{F}_f	Force of friction (N)	m	Mass (kg)	\vec{p}_{fT}	Final total momentums (kg·m/s)
$\vec{F_s}$	Restoring Force (N)	μ	Coefficient of friction (no units)	f	Frequency (Hz)
\vec{a}_c	Centripetal Acceleration (m/s²)	T	Period (s)	r	Circular & Orbital Radius (m)
τ	Torque $(N \cdot m)$	F_{\perp}	Perpendicular Component of Force (N)	V	Circular Speed (m/s)
k	Spring Constant (N/m)				

^{*}All variables that are vectors have an x and y component. The equations below are generalized and you have to remember to analyze (calculate) each dimension independently if the problem warrants.

$\vec{F}_{net} = \sum Forc$	$s \sum F = \sum m \times a$		$\vec{F}_{net} = m\vec{a}$	$\vec{F_g} = m\vec{g}$	$\vec{F}_f = \mu \vec{F}_N$	$F_s = -kx$	$\vec{p} = m\vec{v}$	$\vec{J} = \Delta \vec{p}$ $\vec{F}t = m\Delta \vec{v}$	$\vec{p}_{oT} = \vec{p}_{fT}$
$v = \frac{2\pi r}{T}$		$=\frac{v^2}{r}$	$F_c = \frac{mv^2}{r}$	$f = \frac{1}{T}$	$v = \sqrt{rg\mu_s}$	$v = \sqrt{rg \tan \theta}$	$\tau = rF_{\perp}$	$\vec{ au}_{net} = \sum T$	Torques
$\vec{J} = \vec{F}t$ $\vec{J} = \text{Area under F - t curve}$ $T = 2\pi$		$\sqrt{\frac{m}{k}}$							

Motion Examples

A car accelerates from zero to 35 m/s in 7.3 seconds.

- a) What is the average acceleration?
- b) What distance was covered during the acceleration?

a)
$$V_0 = 0 \, \text{m/s} \quad V_f = 35 \, \text{m/s}$$

 $t = 7.3 \, \text{s} \quad a = ?$
 $a = \frac{V_f - V_0}{t} = \frac{35 - 0}{7.3} = \frac{4.8}{\text{m/s}^2}$
b) $\Delta x = ?$
 $\Delta x = V_{0x} + \frac{1}{2} a_x + \frac{1}{2} a_x$

Standing near the edge of a cliff a baseball is launched straight up with a velocity of 15 m/s. The ball is in the air for a total of 4.5 s before it hits the ground at the bottom of the cliff. Find the height of the cliff (magnitude of the acceleration of gravity, $g = -9.8 \text{ m/s}^2$).