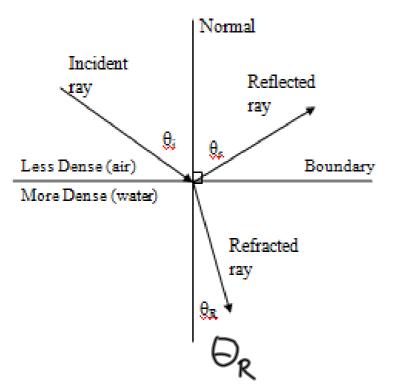
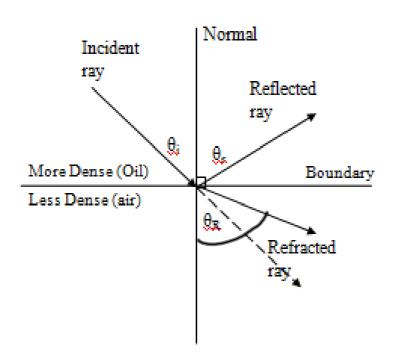

Refraction


Refraction is the change of direction of a ray of light as it travels into different media. (Different media means different densities).

www.physicsclassroom.com/Class/waves/u10l3b.html

- o Waves change direction as they enter shallow water.
- The same is true for light. Light changes direction as enters different media at an angle.
- How the light will bend depends on how the two media compare in density & physical structure.


• The ray diagrams below illustrate what happens to light for the two cases.

Refraction from a less dense to denser medium:

 \Rightarrow The angle of refraction, Θ_R , is less than the incident angle, Θ_{i} .

- \Rightarrow The refracted ray bends towards the normal \rightarrow light slows down.
- ⇒ This will always be the case if light is coming from air and into anther medium.

Refraction from a more dense to less dense medium:

- \Rightarrow The angle of refraction, θ_R , is more than the incident angle, θ_{i^*}
- \Rightarrow The refracted ray bends away from the normal \rightarrow light speeds up.
- ⇒ If the angle of incidence is zero, there is no change of direction, but there is a change of speed.
- ⇒ <u>Principle of Reversibility</u>: If a light ray is reversed, it travels back along its original path.

Index of Refraction

To understand the behavior of light in different properties, we refer to the index of refraction not it is the ratio of the speed of light in a vacuum, c, to the speed of light in a given material, v. Mathematically,

$$n = \frac{c}{v}$$

The higher the index of refraction, the more light is slowed down when it travels from a vacuum in to a substance.

Examples

1. The speed of light in a liquid is 2.25 \times 10 8 m/s. What is the refractive index of the liquid?

$$n = \frac{2}{\sqrt{2.25 \times 10^8 \text{ M/s}}} = 1.33$$

2. Calculate the speed of light in Lucite (Plexiglas), if $n_{lucite} = 1.51$

$$n = \frac{c}{\sqrt{}}$$

$$V = \frac{1}{2}$$

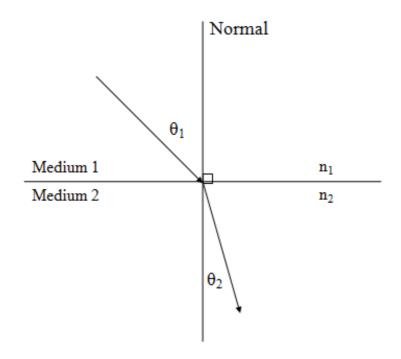
$$\nabla = \frac{3.00710^{8} \text{m/s}}{1.51}$$

Indices of Refraction	
Substance	Index of Refraction (n)
Vacuum	1.0000
Air (0°C, 101 <u>kPa</u>)	1.0003
Water	1.33
Ethyl alcohol	1.36
Quartz (fused)	1.46
Glycerin	1.47
Lucite or Plexiglas	1.51
Glass (crown)	1.52
Sodium chloride	1.53
Glass (crystal)	1.54
Ruby	1.54
Glass (flint)	1.65
Zircon	1.92
Diamond	2.42
Note: For yellow light, wavelength = 589 nm	

Laws of Refraction

Willebrod Snell (1591 - 1626) was able to determine the exact relationship between the angle of incidence and the angle of refraction.

- This enables us to predict the direction a ray of light would take in various media.
- ⇒ This is called <u>Snell's Law</u>:


$$\frac{\sin i}{\sin R} = \text{constant}$$

- ⇒ Where i = angle of incidence and R = angle of refraction.
- ⇒ If light is traveling from a vacuum, the constant is the index of refraction of the material.

The Laws of Refraction are:

- 1. The ratio of the sine of the angle of incidence to the sine of the angle of refraction is a constant (Snell's Law).
- 2. The incident ray and the refracted ray are on opposite sides of the normal at the point of incidence, and all three lie in the same plane.

Snell's Law - A General Equation

Mathematically we write:

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{n_2}{n_1}$$
or
$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

Examples

1st 2nd

1. Light travels from crown glass into air. The angle of refraction in air is 60° . What is the angle of incidence in glass?

$$\int_{1}^{1} \sin \theta_{1} = \int_{2}^{1} \sin \theta_{2}$$
 $\int_{1}^{1} \sin \theta_{1} = \int_{1}^{1} \sin \theta_{2}$
 $\int_{1}^{1} \sin \theta_{1} = \int_{1}^{1} \sin \theta_{2}$
 $\int_{1}^{1} \sin \theta_{1} = \int_{1}^{1} \cos \theta_{2}$
 $\int_{1}^{1} = \int_{1}^{1} \cos \theta_{2}$
 $\int_{1}^{1} = \int_{1}^{1} \cos \theta_{1}$
 $\int_{1}^{1} = \int_{1}^{1} \cos \theta_{2}$
 $\int_{1}^{1} \sin \theta_{1} = \int_{1}^{1} \cos \theta_{2}$
 $\int_{1}^{1} \cos \theta_{1} = \int_{1}^{1} \cos \theta_{1}$
 $\int_{1}^{1} \cos \theta_{1}$