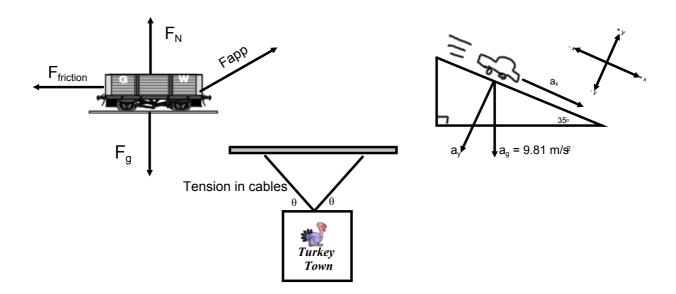
Physics 122/121

Unit 1

Dynamics Extension

definition of equlibrium: the state of an object when the vector sum of all the forces acting on it is zero.

If an object is at *rest* and is in *equilibrium*, then we say that it is in a state of "*static equilibrium*."


Equilibrant: is the one vector, when added to 2 or more other vectors produces a state of equilibrium. It is equal to the resultant but opposite in direction.

Try - Three forces act simultaneously on point P. The first force is 10 N east. The second force is 15 N south. The third force is 28 N, E46S. Find the resultant force. (46 N, E50 S). Find the equilibrant.(46N, W50N)

Three Types of Force Problems

Chapter 7.3 Pg 132

- 1 Pushing or pulling an object along a horizontal surface.
- 2 Tension and hanging signs.
- 3 Objects on an incline.

Force Problems - Type I

A 55 kg snow blower is pushed along the ground at an angle of 35 to the horizontal with an applied force of 175 N.

- a) Find the F_{ax} and F_{ay} .
- b) Calculate F_N.
- c) Find the force of friction if $\mu = 0.19$.
- d) Find the F_{netx}.
- e) Find a_x.

a)
$$F_{ax} = F_{cos}\theta$$

= 175cos35 = 143 N
 $F_{ay} = -175 S_{in} 35 = -100 N$

b)
$$F_{N}=?$$

Fraty = \sum Forces ventically

Frety = $F_{ay} + F_{g} + F_{N}$
 $O = -100 + (55 \text{ kg} \times 9.81) + F_{N}$
 $O = -100 - 540 + F_{N}$
 $O = -100 - 540 + F_{N}$

c)
$$F_{f} = MF_{N}$$

= (0.19)(640)
 $F_{f} = 122 N \leftarrow \text{magnitude}$

e)
$$a_{2}=?$$

Fretz = max

 $21 = 55a_{2}$
 $0.38 \text{ M/s}^{2} = a_{2}$

A 35 kg wagon is pulled along the ground at an angle of 25 to the horizontal with an applied force of 97 N.

- a) Find the F_{ax} and F_{ay} .
- b) Calculate F_N.
- c) Find the force of friction if μ = 0.22.
- d) Find the F_{netx} . e) Find a_x .

Fay = 97 sin
$$25^{\circ}$$
 = 41 N
b) F_{N} = ? Σ Forces in y-direction
Facty = F_{N} + F_{ay} + F_{g}
 $O = F_{N}$ + 41 + $(35)(-9.81)$
 $O = F_{N}$ - 302.4
 $\boxed{302 = F_{N}}$

c)
$$F_F = \mu F_N$$

= $(0.22)(302) = 66 N$

d) Fretx=?

Fretx =
$$\sum Forces in x-d.r$$

= $Fax + Fa$

= $88 + (-66) = [22 N]$

e)
$$a_{x} = ?$$
 $F_{ndx} = ma_{x}$
 $22 = 35a_{x}$
 $35 = a_{x}$

Physics 122/121 **Force Problems - Type I**

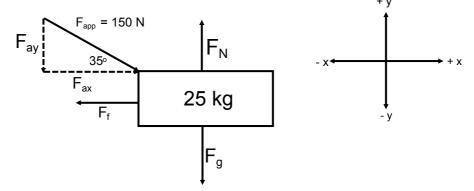
MHR - Chapter 5 - Page 174

- 17. A student pushes a 25 kg lawn mower with a force of 150 N. The handle makes an angle of 35° to the horizontal.
 - (a) Find the vertical and horizontal components of the applied force.
 - **(b)** Calculate the normal force supporting the lawn mower while it is being pushed.
 - (c) Calculate the net force propelling the mower if a frictional force of 85 N exists.
 - (d) Calculate the horizontal acceleration of the lawn mower. (Remember: Only part of the F_{applied} is parallel to the direction of horizontal acceleration.)

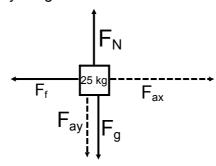
- a) 86 N, down 1.2 x 10² N, right
- b) 3.3 x 10² N, up
- c) 38 N, right
- d) 1.5 m/s^2 , right

24. A toboggan with a mass of 15 kg is being pulled with an applied force of 45 N at an angle of 40° to the horizontal. What is the acceleration if the force of friction opposing the motion is 28 N?

0.43 m/s², right


- **25.** A grocery cart is being pushed with a force of 450 N at an angle of 30.0° to the horizontal. If the mass of the cart and the groceries is 42 kg,
 - (a) Calculate the force of friction if the coefficient of friction is 0.60.
 - (b) Determine the acceleration of the cart.
- MHR Chapter 5 Page 209
- **36.** A 45.0 kg box is pulled with a force of 205 N by a rope held at an angle of 46.5° to the horizontal. The velocity of the box increases from 1.00 m/s to 1.50 m/s in 2.50 s. Calculate
 - (a) the net force acting horizontally on the box.
 - (b) the frictional force acting on the box.
 - (c) the horizontal component of the applied force.
 - (d) the coefficient of kinetic friction between the box and the floor.

b) 0.23 m/s², right


a) 3.8 x 10² N, left

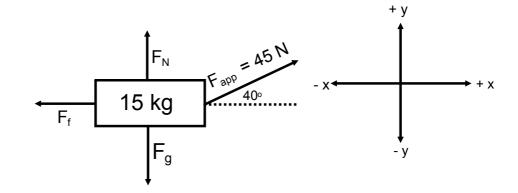
- a) 9.0 N, right
- b) 132 N, left
- c) 141 N, right
- d) 0.451

#17

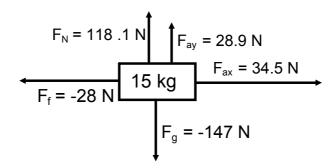
Free Body Diagram

(a)
$$F_{ax} = +150\cos(35)$$

= 123 N


$$F_{ay} = -150\sin(35)$$

= -86 N


(b)
$$F_{nety} = F_{ay} + F_g + F_N$$

 $0 = -86 \text{ N} - \text{mg} + F_N$
 $0 = -86 - 25(9.81) + F_N$
 $0 = -86 - 245.25 + F_N$
 $0 = -331.25 + F_N$
 $+330 \text{ N} = F_N$

(c)
$$F_{netx}$$
 = Sum of horizontal forces
= F_{ax} + F_f
= 123 + -85
= + 38 N

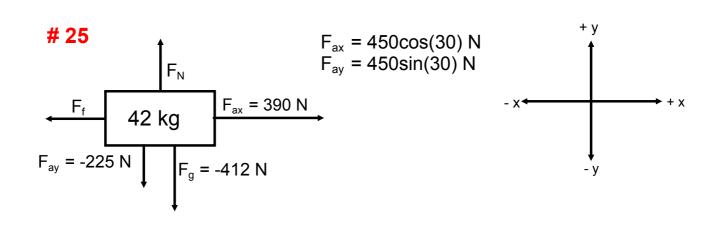
(d)
$$F_{net} = ma$$

$$a = \frac{F_{net}}{m}$$

$$a = \frac{+38 N}{25 kg}$$

$$a = +1.5 \text{ m/s}^2$$

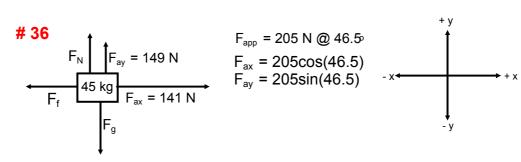
24


$$F_{\text{netx}} = F_{\text{ax}} + F_{\text{f}}$$

= 34.5 + (-28)
= + 6.5 N

$$F_{net} = ma$$

$$a = \frac{F_{net}}{m}$$


$$a = +6.5 \text{ N/15 kg}$$

$$a = +0.43 \text{ m/s}^2$$

(a)
$$F_f = \mu F_N, \ \mu = -0.60$$

 $F_{nety} = F_{ay} + F_g + F_N$
 $0 = -412 \text{ N} + -225 \text{ N} + F_N$
 $F_N = +637 \text{ N}$
 $F_f = 0.60(637 \text{ N})$
 $F_f = 380 \text{ N} \text{ [left]}$

(b)
$$a = \frac{F_{net}}{m} = F_{ax} + F_{f}$$

 $a = (389.7 \text{ N} + -382 \text{ N}) \div 42 \text{ kg}$
 $a = +0.19 \text{ m/s}^{2}$

(a)
$$F_{\text{net}} = ma_{\Delta t}$$

$$a = \frac{\Delta v}{\Delta t}$$

$$a = \frac{1.50m/s - 1.00m/s}{2.50s}$$

$$a = 0.20 \text{ m/s}^2$$

$$F_{\text{net}} = (45\text{kg})(0.20\text{m/s}^2)$$

$$= 9.0 \text{ N}$$

(c)
$$F_{ax} = 141 \text{ N}$$

(d)
$$F_{kf} = \mu F_N$$
 $F_{nety} = F_{ay} + F_g + F_N$
 $0 = -441 \text{ N} + 149 \text{ N} + F_N$
 $F_N = +292 \text{ N}$

$$\mu = \frac{F_f}{F_N}$$

$$can use "+132" as the formula implies the formula implies the magnitude of F_f .

$$\mu = \frac{+132N}{292N}$$

$$\mu = 40.451$$$$