How fast am I moving?

CHAPTER 12

Motion

Chapter Outline

- 12.1 DISTANCE AND DIRECTION
- 12.2 SPEED AND VELOCITY
- 12.3 ACCELERATION

12.1 Distance and Direction

Lesson Objectives

- Define motion, and relate it to frame of reference.
- Describe how to measure distance.
- Explain how to represent direction.

Lesson Vocabulary

- distance
- · frame of reference
- motion
- vector

Frame of Reference

Distance

Did you ever go to a track meet like the one pictured in **Figure 12.3**? Running events in track include 100-meter sprints and 2000-meter races. Races are named for their distance. **Distance** is the length of the route between two points. The length of the route in a race is the distance between the starting and finishing lines. In a 100-meter sprint, for example, the distance is 100 meters.

Start
$$d = \frac{1}{2}(2\pi r)$$
20 m
$$d_{3}t = 62m$$
Finish
$$d_{3}splacement = 40$$

<u>Displacement</u>: Change in position (from start to finish)

Distance is an example of a <u>scalar</u> quantity. In formulas it is represented as *d*.

Displacement is an example of a <u>vector</u> quantity. In formulas it is represented as \vec{d} .

A <u>scalar</u> only has magnitude or size. Examples include mass, time, distance, and speed.

A <u>vector</u> has both magnitude (size) and a direction. It is represented by an arrow. The arrow tip shows the direction and size of the arrow the magnitude. Examples include displacement, velocity, acceleration, force, electric and magnetic fields.

Example Problems

- 1. A person walks 25 m [E], then turns around and walks 75 m [W].
- a) Calculate the total distance traveled.

$$d = 25 \text{ m} + 75 \text{ m} = 100 \text{ m}$$

 $W_{-} \leftarrow + \text{E}$

b) Calculate the resulting displacement.

$$J = +25m - 75m = -50m [Eost]$$
 $N = +25m - 75m = -50m [West]$
 $N = +25m - 75m = -50m [West]$

- a) Calculate the total distance traveled.

$$d = 12m + 8m + 22m + 15m$$
 $f = 57m$

b) Calculate the resulting displacement.

$$\frac{\partial}{\partial t} = +12m - 8m + 22m - 15m$$

$$= 11m North$$