Waves

- ⇒ A wave is a transfer of energy, in a form of a disturbance usually through a material substance, or medium.
 - ⇒ Electromagnetic Waves

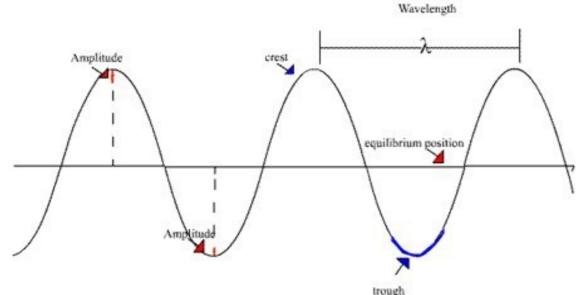
 - ⇒ Pressure waves
- ⇒ When objects repeat a pattern of motion (e.g. a pendulum), we say that object is vibrating or oscillating. (wiimote demo)
 - The oscillation is repeated over and over with the same time interval each time.
 - ⇒ One complete oscillation is called a cycle.
 - The number of cycles per second is called the <u>frequency</u>, **f**. The frequency is measured in Hertz (Hz).

The <u>period</u>, T, usually measured in seconds, is the time required for one cycle. The frequency and period are reciprocals of each other.

frequency=
$$\frac{\text{cycles}}{\text{time}} = \frac{1}{T}$$

period =
$$\frac{\text{time}}{\text{cycle}} = \frac{1}{f}$$

Examples

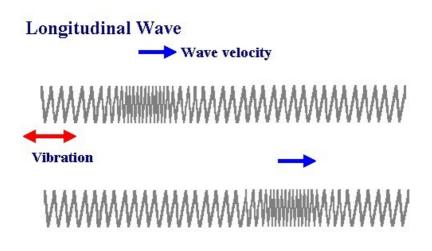

1. A pendulum completes 30 cycles in 15 seconds. Calculate its frequency and period.

$$f = \# cycles = \frac{30}{15} = 2H_2$$

$$\frac{OC}{T=\frac{1}{f}}=\frac{1}{2H_z}=\overline{[0.5s]}$$

Transverse Waves

- ⇒ The particles in the medium vibrate at right angles to the direction in which the wave travels.
 - □ The high section is called the crest, and the low section is called the trough.
 - □ The height of the crest or depth of the trough, from the equilibrium position is called the amplitude.
 - For periodic waves, the distance between successive crests and troughs is equal and is called the <u>wavelength</u>. The symbol for the wavelength is the Greek letter lambda, λ .
 - ⇒ The period of a transverse wave is the time it takes for one wavelength (one cycle) to pass a fixed point.
 - ⇒ The frequency is the number of wavelengths that passed a fixed point in one second.
 - ⇒ Examples include water waves and making vibrations on a rope.



library.thinkquest.org/. ../Waves/basic.htm

Longitudinal Waves

- ⇒ The vibrations of the particles are parallel to the direction of motion.
 - □ There are a compressions and rarefactions created in longitudinal waves.
 - ⇒ One wavelength is the distance between the midpoints of successive compressions or rarefactions.
 - ⇒ The amplitude is the maximum displacement of the particles from their rest position. Amplitude is a measure of the wave's energy.

- ⇒ The period of a longitudinal wave is the time it takes for one wavelength (one cycle) to pass a fixed point.
- ⇒ The frequency is the number of wavelengths that passed a fixed point in one second.
- ⇒ Sound waves, pressure waves are examples.

www.christian81.free-online.co.uk

Transmission of Waves

⇒ When a wave is generated in a spring or a rope, the wave travels a distance of one

wavelength, λ , along the rope in the time required for one complete vibration of the source (the period). We can use the formula for velocity to derive the wave equation:

$$velocity, v = \frac{change in distance, \Delta d}{change in time, \Delta t}$$
 and
$$\Delta d = \lambda, \text{ and } \Delta t = T$$
 therefore
$$v = \frac{\lambda}{T} \not \rightarrow$$

$$f = \frac{1}{T}$$
 Therefore
$$v = f\lambda \not \rightarrow$$

 \Rightarrow The wave equation, $v = f\lambda$, applies to all waves, visible and invisible.

Examples

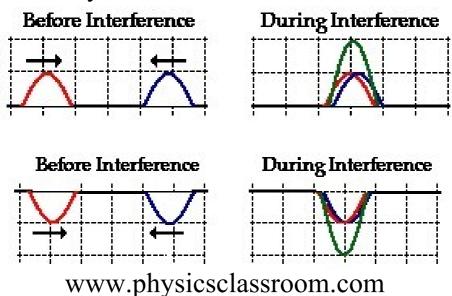
1. The wavelength of a water wave in a ripple tank is 0.080 m. If the frequency of the wave is 2.5 Hz, what is its speed?

2. The distance between successive crests in a series of water waves is 4.0 m, and the crests travel 9.0 m in 4.5 s. What is the frequency of the waves?

$$\lambda = 4.0 \text{m}$$
 $v = d = 9/4.5 = 2 \text{m/s}$
 $d = 9.0 \text{m}$
 $t = 4.5 \text{s}$
 $v = f \lambda$
 $\lambda = 4.5 \text{s}$
 $\lambda = 4.5 \text{s}$

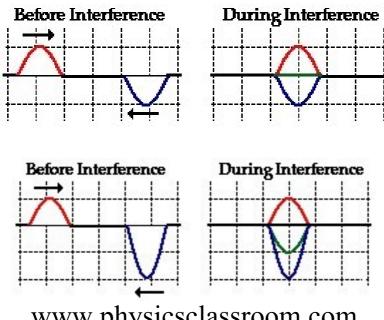
Transmission and Reflection

Waves travel at uniform speed as long as the medium they are in does not change. (Note: If the tension changes, then that is a change in medium.)


When waves propagate into a different medium, the frequency stays the same. The wave velocity changes.

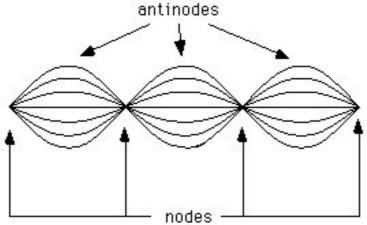
Thus, the wavelength must change as well.v is directly proportional to λ . $\sqrt{=}$

<u>Transmission of Waves</u>


⇒ Wave interference is when two or more waves act simultaneously on the same particles of a medium.

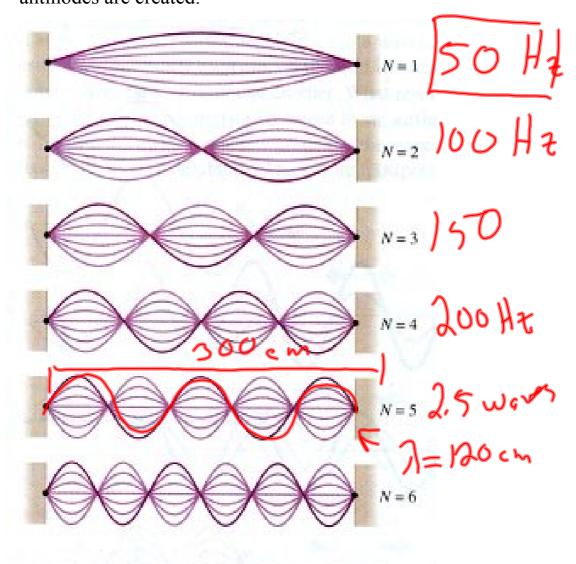
- ⇒ Principle of Superposition: The resultant displacement of a given particle is equal to the sum of the displacements that would have been produced by each wave acting independently.
- Constructive interference results when two of more waves interfere to produce a resultant displacement greater than the displacement caused by either wave itself.

➤ Destructive Interference is when the resultant displacement is smaller than the


displacement that would be caused by one wave by itself.

www.physicsclassroom.com

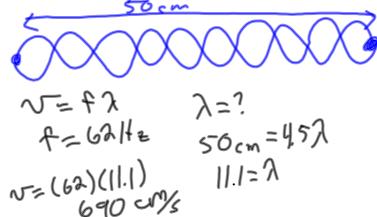
Standing Waves: Interference in One Dimension


- ⇒ A standing wave interference pattern occurs if interfering waves have the same amplitude, wavelength, frequency, and are traveling in opposite directions.
 - Called a standing wave for short.

electron4.phys.utk.edu/ 141/dec1/December%201.htm

- The <u>node</u>, or <u>nodal point</u>, is where crests and troughs of equal amplitude interfere destructively. For one-dimensional waves the fixed ends are nodal points.
- ⇒ The antinodes, or loops, are areas of constructive interference.
- ⇒ The number of nodal points for a given medium depends on the physical structure of that medium, thus only certain frequencies will produce a standing wave pattern. Such frequencies are resonance frequencies for that medium.

⇒ If one antinode were created with a certain frequency, say f_i, then to create two or three antinodes (etc.) the frequency would have to be 2f_i, or 3f_i respectively. Note the decrease in amplitude as more antinodes are created.



sol.sci.uop.edu/.../ soundinterference.html

- \Rightarrow The distance between two successive nodes in a vibrating string is $\frac{1}{2}\lambda$.
- ⇒ The point of maximum displacement from a node is ½λ.

Examples

1. What is the wave speed of a standing with containing 4.5 waves in 50 cm and waves are created 62 times each second?

2. A standing wave pattern contains 8 nodes (with a node at the beginning and end. The distance between the second and 6th node 70 cm. The wave speed is 102 cm/s. What frequency is necessary to observe 3 nodes taking up the full length of the string?

$$70cm$$
 $f_3 = ?$
 $70cm$ $f_3 = ?$
 $70cm$