
a) Given the launch velocity of a projectile is v, and target coordinates are (x, y) relative to the launch position; derive the equation below which is necessary for finding the angle of attack:

$$
\frac{g x^{2}}{2 v^{2}} \tan ^{2} \theta+x \tan \theta+\frac{g x^{2}}{2 v^{2}}-y=0
$$

b) The launch velocity of an artillery shell is $425 \mathrm{~m} / \mathrm{s}$. Neglecting air resistance and weather systems, calculate the angle necessary to hit a target located $(x, y)=(3790 m, 2706 m)$.

