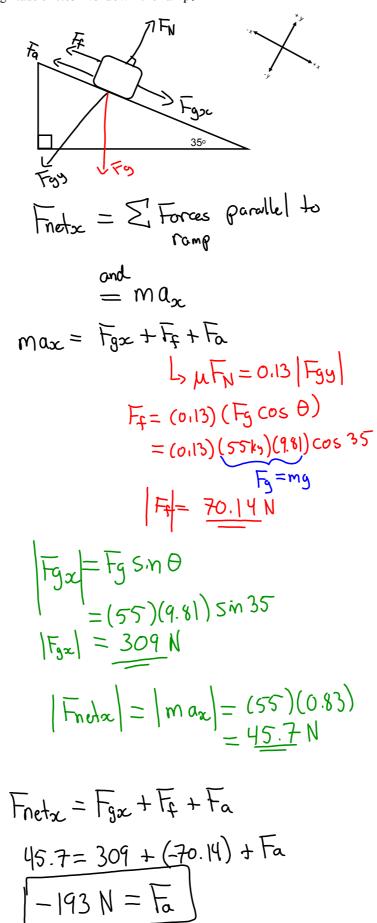

Type III - Inclined Planes, Hills, Ramps

 F_{gy} and F_g are separated by θ because of two similar triangles.



$$F_{gx} = F_g \sin \theta$$
 component parallel to the plane.
 $F_{gy} = F_g \cos \theta$ component perpendicular to the plane.

NOTE! The *sin* and *cos* have switched places in the way we label the problem. This will only happen when dealing with objects on a ramp.

NOTE FURTHER! Every **F** in the above diagram can be replaced with an **a** for acceleration.

1. A 55 kg block is sliding down an incline. The coefficient of kinetic friction is 0.13 and the incline makes an angle of 35° with the ground. What applied force up the ramp is necessary so the block accelerates with a magnitude of 0.83 m/s² down the ramp?

2. What applied force is necessary for a person to pull a 30 kg object up a ramp at a constant velocity? The ramp makes an angle of 25° with the ground and the coefficient of kinetic friction is 0.12.

Fretz =
$$\sum_{\text{Forces}}$$
 Forces

Final = \sum_{Fg} Forces

Fig. = \sum_{Fg} Forces

Fig. = \sum_{Fg} Fig. = \sum_{Fg} Fig. = \sum_{Fg} Fig. (0.12)(30 kg)(9.81) cos 25°

= \sum_{Fg} = Fig. sin \sum_{Fg} = (30)(9.81) s. m. 25°

= \sum_{Fg} = \sum_{Fg} Sin \sum_{Fg} = (30)(9.81) s. m. 25°

= \sum_{Fg} = \sum_{Fg} Sin \sum_{Fg} = (30)(9.81) s. m. 25°

$$F_{\text{nefr}}$$

 $O = (-124) + (-32) + F_{\alpha}$
 $156 N = F_{\alpha}$