Waves

- ⇒ A wave is a transfer of energy, in a form of a disturbance usually through a material substance, or medium.
 - ⇒ Electromagnetic Waves

 - ⇒ Pressure waves
- ⇒ When objects repeat a pattern of motion (e.g. a pendulum), we say that object is vibrating or oscillating. (wiimote demo)
 - The oscillation is repeated over and over with the same time interval each time.
 - ⇒ One complete oscillation is called a cycle.
 - The number of cycles per second is called the <u>frequency</u>, **f**. The frequency is measured in Hertz (Hz).

The <u>period</u>, T, usually measured in seconds, is the time required for one cycle. The frequency and period are reciprocals of each other.

frequency=
$$\frac{\text{cycles}}{\text{fime}} = \frac{1}{T}$$

period =
$$\frac{\text{time}}{\text{cycle}} = \frac{1}{f}$$

Examples

1. A pendulum completes 30 cycles in 15 seconds. Calculate its frequency and period.

$$f = \pm cycles = \frac{30}{15} = \boxed{2H_2}$$

$$\frac{OC}{T} = \frac{1}{f} = \frac{1}{2H_z} = [0.5]$$

Transverse Waves

- The particles in the medium vibrate at right angles to the direction in which the wave travels.
 - ⇒ The high section is called the crest, and the low section is called the trough.
 - ⇒ The height of the crest or depth of the trough, from the equilibrium position is called the amplitude.
 - For periodic waves, the distance between successive crests and troughs is equal and is called the <u>wavelength</u>. The symbol for the wavelength is the Greek letter lambda, λ .
 - ⇒ The period of a transverse wave is the time it takes for one wavelength (one cycle) to pass a fixed point.
 - ⇒ The frequency is the number of wavelengths that passed a fixed point in one second.
 - Examples include water waves and making vibrations on a rope.

Longitudinal Waves

- The vibrations of the particles are parallel to the direction of motion.

 - ⇒ One wavelength is the distance between the midpoints of successive compressions or rarefactions.
 - ⇒ The amplitude is the maximum displacement of the particles from their rest position. Amplitude is a measure of the wave's energy.

- ⇒ The period of a longitudinal wave is the time it takes for one wavelength (one cycle) to pass a fixed point.
- ⇒ The frequency is the number of wavelengths that passed a fixed point in one second.
- ⇒ Sound waves, pressure waves are examples.

www.christian81.free-online.co.uk

Transmission of Waves

⇒ When a wave is generated in a spring or a rope, the wave travels a distance of one

wavelength, λ , along the rope in the time required for one complete vibration of the source (the period). We can use the formula for velocity to derive the wave equation:

$$velocity, v = \frac{change \, in \, \, distance, \Delta d}{change \, in \, time, \, \Delta t}$$
 and
$$\Delta d = \lambda, \, \, and \, \Delta t = T$$
 therefore
$$v = \frac{\lambda}{T}$$

$$f = \frac{1}{T}$$
 Therefore
$$v = f\lambda$$

 \Rightarrow The wave equation, $v = f\lambda$, applies to all waves, visible and invisible.

Examples

1. The wavelength of a water wave in a ripple tank is 0.080 m. If the frequency of the wave is 2.5 Hz, what is its speed?

2. The distance between successive crests in a series of water waves is 4.0 m, and the crests travel 9.0 m in 4.5 s. What is the frequency of the waves?

$$\lambda = 4.0 \text{m}$$
 $v = d = 94.5 = 2 \text{m/s}$
 $d = 9.0 \text{m}$ $v = f \lambda$
 $t = 4.5 \text{s}$ $v = f \lambda$
 $t = 7.$ $t = 7.$

PRACTICE PROBLEMS

MHR: Pg. 341 # 1-4.

- A metronome beats 54 times over a 55 s time interval. Determine the frequency and period of its motion.
- Most butterflies beat their wings between 450 and 650 times per minute. Calculate in hertz the range of typical wing-beating frequencies for butterflies.
- **3.** A watch spring oscillates with a frequency of 3.58 Hz. How long does it take to make 100 vibrations?
- **4.** A child swings back and forth on a swing 12 times in 30.0 s. Determine the frequency and period of the swinging.

PRACTICE PROBLEMS

Pg. 349 # 5 – 9.

- **5.** A longitudinal wave in a 6.0 m long spring has a frequency of 10.0 Hz and a wavelength of 0.75 m. Calculate the speed of the wave and the time that it would take to travel the length of the spring.
- 7. Tsunamis are fast-moving ocean waves typically caused by underwater earthquakes. One particular tsunami travelled a distance of 3250 km in 4.6 h and its wavelength was determined to be 640 km. What was the frequency of this tsunami?
- 8. An earthquake wave has a wavelength of 523 m and travels with a speed of 4.60 km/s through a portion of Earth's crust.
 - (a) What is its frequency?
 - (b) If it travels into a different portion of Earth's crust, where its speed is 7.50 km/s, what is its new wavelength?

- 6. Interstellar hydrogen gas emits radio waves with a wavelength of 21 cm. Given that radio waves travel at 3.00×10^8 m/s, what is the frequency of this interstellar source of radiation?
 - (c) What assumption(s) did you make to answer part (b)?
- **9.** The speed of sound in air at room temperature is 343 m/s. The sound wave produced by striking middle C on a piano has a frequency of 256 Hz.
 - (a) Calculate the wavelength of this sound.
 - (b) Calculate the wavelength for the sound produced by high C, one octave higher than middle C, with a frequency of 512 Hz.

Problems for Understanding Chapter Review Pg. 372 # 21 – 28.

- **21.** A pendulum takes 1.0 s to swing from the rest line to it's highest point. What is the frequency of the pendulum?
- **22.** By what factor will the wavelength change if the period of a wave is doubled?
- 23. A wave with an amplitude of 50.0 cm travels down a 8.0 m spring in 4.5 s. The person who creates the wave moves her hand through 4 cycles in 1 second. What is the wavelength?
- **24.** A sound wave has a frequency of 60.0 Hz. What is its period? If the speed of sound in air is 343 m/s, what is the wavelength of the sound wave?

- **25.** Water waves in a ripple tank are 2.6 cm long. The straight wave generator used to produce the waves sends out 60 wave crests in 42 s.
 - (a) Determine the frequency of the wave.
 - (b) Determine the speed of the wave.
- **26.** A rope is 1.0 m long and the speed of a wave in the rope is 3.2 m/s. What is the frequency of the fundamental mode of vibration?
- 27. A tsunami travelled 3700 km in 5.2 h. If its frequency was 2.9×10^{-4} Hz, what was its wavelength?
- **28.** A storm produces waves of length 3.5 m in the centre of a bay. The waves travel a distance of 0.50 km in 2.00 min.
 - (a) What is the frequency of the waves?
 - (b) What is the period of the waves?

Transmission and Reflection

Waves travel at uniform speed as long as the medium they are in does not change. (Note: If the tension changes, then that is a change in medium.)

When waves propagate into a different medium, the frequency stays the same. The wave velocity changes.

Thus, the wavelength must change as well.v is directly proportional to λ .

Transmission of Waves

⇒ Wave interference is when two or more waves act simultaneously on the same particles of a medium.

- ⇒ Principle of Superposition: The resultant displacement of a given particle is equal to the sum of the displacements that would have been produced by each wave acting independently.
- Constructive interference results when two of more waves interfere to produce a resultant displacement greater than the displacement caused by either wave itself.

➤ Destructive Interference is when the resultant displacement is smaller than the

displacement that would be caused by one wave by itself.

Standing Waves: Interference in One Dimension

- ⇒ A standing wave interference pattern occurs if interfering waves have the same amplitude, wavelength, frequency, and are traveling in opposite directions.
 - Called a standing wave for short.

electron4.phys.utk.edu/ 141/dec1/December%201.htm

- The <u>node</u>, or <u>nodal point</u>, is where crests and troughs of equal amplitude interfere destructively. For one-dimensional waves the fixed ends are nodal points.
- ⇒ The antinodes, or loops, are areas of constructive interference.
- The number of nodal points for a given medium depends on the physical structure of that medium, thus only certain frequencies will produce a standing wave pattern. Such frequencies are resonance frequencies for that medium.

⇒ If one antinode were created with a certain frequency, say f₁, then to create two or three antinodes (etc.) the frequency would have to be 2f₁, or 3f₁ respectively. Note the decrease in amplitude as more antinodes are created.

sol.sci.uop.edu/.../ soundinterference.html

- \Rightarrow The distance between two successive nodes in a vibrating string is $\frac{1}{2}\lambda$.
- \Rightarrow The point of maximum displacement from a node is $\frac{1}{4}$ λ.

Examples

1. What is the wave speed of a standing with containing 4.5 waves in 50 cm and waves are created 62 times each second?

2. A standing wave pattern contains 8 nodes (with a node at the beginning and end. The distance between the second and 6th node 70 cm. The wave speed is 102 cm/s. What frequency is necessary to observe 3 nodes taking up the full length of the string?