
James M. Hill Physics Handbook 2013 - 2014

- Equations, Variables, and Units
- Physical Constants
- Solar System Data
- Metric System

In the equations that follow all variables that are vectors could have a horizontal and vertical component. You have to remember to analyze each dimension independently if the problem warrants.

Symbol Quantity (Unit) Quantity (Unit) Symbol Ŕ Resultant \vec{A}, \vec{B} **Arbitrary Vectors** Horizontal component of Horizontal component of arbitrary R_E or R_x A_E or A_x resultant (E = Eastern) vectors (E = Eastern) Vertical component of arbitrary Vertical component of R_N or R_v A_N or A_V resultant (N = Northern) vectors (N = Northern) θ Angle made with horizontal (°) $\left|\vec{R}\right| = \sqrt{R_x^2 + R_y^2}$ $\theta = \tan^{-1}$ $R_x = A_x + B_x + \cdots$ $R_y = A_y + B_y + \cdots$ R.

Mathematical Addition of Vectors

! Look very carefully at the trigonometry when calculating vector components.

Mr. P. MacDonald

JMH Physics Handbook

Kinematics - Mathematical Analysis & Projectile Motion

Symbol	Quantity (Un	it)	Symbol	Quantity	(Unit)	Symbol	G	Quantity (Unit)	
anything _f	Final value	anything		Magnitude	d	Distance (m)			
$anything_o$	Initial Value			Displacement (m)	v_{sp}	Average Speed (m/s)			
$anything_x$	Horizontal compo	onent	\vec{v}_{avg}	Average velocity (n	n/s)	t	time (s; refers to a time interval)		
$anything_y$	Vertical compone	ent	\vec{v}	Velocity (m/s)		θ	Angle made v	vith horizontal (degrees, °)	
$anything_E$	Eastern compone	nt	ā	Acceleration (m/s ²	Δ	Change in (final - initial)			
$anything_N$	Northern compor	nent	$ec{g}$	9.81 (m/s²; surface	of the Earth)				
$\vec{d} = \vec{d}_f - \vec{d}_o$	$\vec{v}_{avg} = \frac{\vec{d}}{t}$		$v_{sp} = \frac{d}{t}$	$\vec{v}_{avg} = \frac{\vec{v}_f + \vec{v}_o}{2}$	$\vec{a} = \frac{\vec{v}_f - \vec{v}_o}{t}$	$\vec{d}_f = \vec{d}_o +$	$-\vec{v}_o t + \frac{1}{2}\vec{a}t^2$	$\vec{v}_f^2 = \vec{v}_o^2 + 2\vec{a}\vec{d}$	
$v_{ox} = \vec{v} \cos \theta$	$v_{oy} = \vec{v} \sin \theta$	$ \vec{v} =$	$\sqrt{v_{fx}^2 + v_{fy}^2}$	$\theta = \tan^{-1} \left \frac{v_y}{v_x} \right $					

Dynamics - Forces, Impulse, Torque, Momentum, & Circular Motion

Symbol		Quantity (Unit)		Symbo	I	Quantity (Unit)	Symbol	Quantity (Unit)		
\vec{F}_{net}	Net forc	ce (N)		\vec{F}_T	Force of	f Tension (N)		Ĵ	Impulse (N·s)		
\vec{F}_A	Force ap	plied (N)		\vec{F}_N	Normal	Normal Force (N)			Momentum (kg·m/s)		
$\vec{F_g}$	Force of	Force of gravity (N)			Centripe	Centripetal Force (N)			Initial total momentums (kg·m/s)		
\vec{F}_{f}	Force of friction (N)			m	Mass (k	g)		\vec{p}_{fT}	Final total momentums (kg·m/s)		
$\vec{F_s}$	Restoring Force (N)			μ	Coeffici	ent of friction	(no units)	f	Frequency (Hz)		
\vec{a}_c				Т	Period (s)		r	Circular & Orbital Radius (m)		
τ	- (11.)			F_{\perp}	Perpend	Perpendicular Component of Force (N)			Circular Speed (m/s)		
k	Spring C	onstant (N/m)									
$\vec{F}_{net} = \sum$	Forces	$\sum \vec{F} = \sum m \times \vec{a}$	\vec{F}_{net}	$= m \vec{a}$	$\vec{F}_g = m\vec{g}$	$\vec{F}_f = \mu \vec{F}_N$	$F_s = -kx$	$\vec{p} = m\vec{v}$			
$v = \frac{1}{2}$	$\frac{2\pi r}{T}$	$a_c = \frac{v^2}{r}$	$F_c =$	$\frac{mv^2}{r}$	$f = \frac{1}{T}$	$v = \sqrt{rg\mu_s}$	$v = \sqrt{rg\tan\theta}$	$ au = rF_{\perp}$	$\vec{\tau}_{net} = \sum Torques$		
$\vec{J} = \text{Ares}$	$\vec{J} = \vec{F}t$ a under F	- t curve $T = 2\pi$	$\sqrt{\frac{\overline{m}}{k}}$				<u>.</u>		·		

Work, Energy, & Power

Symbol	Quar	ntity (Unit)		S	ymbol		Quant	ity (Unit)				
W	Work (J)	rk (J)				Рои	ver (W; Watts	5)				
Wnc	Work by non-con	non-conservative force (J)			h	Height above reference (m)						
E_k	Kinetic energy (J	ſ)			d	Dis	tance (m)					
E_g	Gravitational pot	ravitational potential energy (J)				Rac	dius of circle ((m)				
Ee	Elastic potential	tic potential energy (J)			X	Str	retch/compre	ssion of sprin	g (m)			
ET	Total mechanical	energy (J)										
	$F = F_{\parallel} \Delta d$ under F – d curve	$E_g = mgh$	$E_k = \frac{1}{2}n$	nv²	$E_e = \frac{1}{2}k$	<i>x</i> ²	$W = \Delta E_k$	$W = \Delta E_g$	$W = \Delta E_e$	$\Delta E_T = 0$	$W_{nc} = \Delta E_T$	$P = \frac{W}{t}$

Mr. P. MacDonald Current Electricity

Symbol	Quantity	/ (Unit)	Symbol	Quantity (Unit)	Symbol	Quantity (Unit)
Ι	Current (A; amper	res)	q	Charge (C; coulombs)	t	Time (s)
Ν	Number of charge	es, resistors	е	Elementary Charge (C)	R	Resistance (Ω ; Ohm)
ρ	Resistivity ($\Omega \cdot m$)		L	Length (m)	Α	Cross-sectional area (m²)
ν, ε	Potential Differen	nce (V; volts)	VT	Voltage of power source (V)	I_T	Current from power source (A)
Regs	Equivalent Resista	ance-series (Ω	2) R _{eqp}	Equivalent Resistance-parallel (Ω)	Р	Power (W)
Ceqp	Equivalent capacit capacitors in para		Ceqs	Equivalent capacitance for capacitors in series (F)	τ	Discharge rate (s)
emf	Electromotive for	ce (V)	r	Internal Resistance (Ω)	Ε	Electrical energy (J)
$I = \frac{\Delta q}{\Delta t}$	q = Ne	$R = \rho \frac{L}{A}$	V = IR	$R_{eqs} = R_1 + R_2 + R_3 + \dots + R_N$	$\frac{1}{R_{eqp}} =$	$\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N}$
$R_{eq} = \frac{V}{I}$	$\frac{T}{T}$ $P = IV$	au = RC	$Q(t) = Q_0 e^{\frac{-t}{\tau}}$	$C_{eqp} = C_1 + C_2 + C_3 + \dots + C_N$	$\frac{1}{C_{eqs}} =$	$\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_N}$
$I(t) = I_o$	$e^{\frac{-t}{\tau}}$ $V_{terminal} = e^{\frac{-t}{\tau}}$	emf — Ir	$Efficiency = \frac{E}{4}$	$\frac{E_{out}}{E_{in}} = \frac{Work}{E_{in}}$		

Gravitational & Electrical Fields

Symbol		Quanti	ty (Unit)	Symbol	Quanti	ity (Unit)	Symbol		Quantity	y (Unit)
$\vec{F_q}$	Elec	trostatic Fo	orce (N)	q	Electric Cha	rge (C)	k	9.0 x 1 constai	$0^9\left(rac{N\cdot m^2}{C^2} ight)$, C	Coulomb's
r	Dist	ance from a	centres (m)	\vec{E}	Electric field	Electric field intensity $\left(\frac{N}{c}\right)$			ational Field	d Intensity $\left(\frac{N}{kg}\right)$
$ec{F_g}$	Ford	ce of gravity	y (N)	E_{g}	Gravitationa energy (J)	l potential	E_q	Electri	c potential	energy (J)
V	Elec	tric potenti	ial difference (\	/) m	Mass of obje	ect (kg)	G		× 10 ⁻¹¹ $\left(\frac{N \cdot m}{kg^2}\right)$), Universal tant
W	Wor	•k (J)		\mathcal{E}_{o}	8.85 x 10 ⁻¹² (Permittivity	(F/m) of free space.	С	Capacit	tance (F, co	alled farads)
Q	Char	rge stored i	n a capacitor (C) к	Dielectric co unit)	onstant (no	d	Plate s	eparation (m)
A	Plate	Plate area (m²)		Ec	Potential ene capacitor (J	51				
$\vec{F}_g = G \frac{m}{d}$	$\frac{1}{r^2}m_2$	$\vec{g} = \frac{\vec{F}_g}{m}$	$ \vec{g} = G \frac{m}{r^2}$	$G\frac{m}{r} = v^2$	$\frac{Gm}{4\pi^2} = \frac{r^3}{T^2}$	$E_g = -G \frac{m_1 m_2}{r}$	$\frac{n_2}{\vec{F}_q} = \vec{F}_q$	$k\frac{q_1q_2}{r^2}$	$\vec{E} = \frac{\vec{F}_q}{q}$	$\left \vec{E}\right = k \frac{q}{r^2}$
$V = \frac{E}{q}$	<u>q</u> !	$V = k \frac{q}{r}$	$\Delta E_q = q \Delta V$	Q = CV	$C = \frac{\kappa \varepsilon_o A}{d}$	$E_C = \frac{1}{2}CV^2$	$\vec{E} = \frac{V}{d}$	$E_q =$	$k\frac{q_1q_2}{r}$	

General Waves & Sound Waves

Symbol	Quantity (Unit)	S	ymbol	Quant	ity (Unit)	Symbol	Quant	tity (Unit)	
Т	Period (s)		f	Frequency	(Hz)	ν	Wave speed		
λ	Wavelength (m) T _{air}		Temp. of a	iir (° Celsius)	Vsound	Sound speed			
V _{src}	Source speed (m/s)		Vobs	Observer's	s speed (m/s)	fobs	Observed fr	equency (Hz)	
fsrc	Source frequency (H	۲z)	F_T	Force of T	ension (N)	μ	Mass/unit lei	ngth (kg/m)	
$T = \frac{\Delta t}{\#wat}$	$\frac{t}{ves} \qquad f = \frac{\#waves}{\Delta t}$	$T = \frac{1}{f}$	$f = \frac{1}{T}$	$v = f\lambda$	$v = \sqrt{\frac{F_T}{\mu}}$	$v_{sound} = 33$	$1 + 0.59T_{air}$	$f_{obs} = f_{src} \left(\frac{v_{sout}}{v_{sout}} \right)$	$\frac{und \pm v_{obs}}{und \mp v_{src}} \Big)$

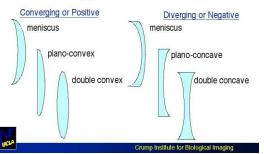
Index of Potraction (n)

Symbol	Quantity (Uni	Jnit) S		bol	Que	antity (Unit)	Symbol	Quantity (Unit)
с	3.00 × 10 ⁸ (m/s), speed of light in a vacuum		V	-	Speed of light in material (m/		п	Index of refraction
ni	Incident medium inde	Incident medium index		n _R Refractive		medium index	θ_i	Incident angle (degrees)
θ_{R}	Refractive angle (deg	rees)) θ _c		Critical Angle (degrees)		$ heta_{max}$	Max angle refraction (degrees)
$n = \frac{c}{v}$	$n_i \sin \theta_i = n_R \sin \theta_R$	$n_i \sin \theta_i$	$c = n_R$	$n_i =$	$n_R \sin heta_{max}$			

Table 9.2 Index of Refraction of Various Substances*

Substance	Index of Refraction (<i>n</i>)
vacuum	1.00000
gases at 0°C,	, 1.013 × 10⁵ Pa
hydrogen	1.00014
oxygen	1.00027
air	1.00029
carbon dioxide	1.00045
liquid	s at 20°C
water	1.333
ethyl alcohol	1.362
glycerin	1.470
carbon disulfide	1.632

Index of Refraction (<i>n</i>)
at 20°C
1.31
1.46
1.47
1.50
1.51
1.52
1.54
1.54
1.54
1.65
1.92
2.42


Substand

* Measured using yellow light, with a wavelength of 589 nm in a vacuum.

Optics (Spherical Mirrors & Lenses)

Symbol		Quantity (l	Jnit)	Symbol		Quantity (Unit)	Symbol	Quantity (Unit)
f	Foc	al length (m,	cm, mm)	do	Obje	ct distance (m, cm, mm)	d_i	Image distance (m, cm, mm)
hi	Ima	ige height (m	, cm, mm)	ho	Obje	ct height (m, cm, mm)	М	Magnification
n _{lens}	Len	s refractive i	ndex	n _o	Surro	ounding medium refractive index	R	Radius of curvature (m, cm, mm)
$\frac{1}{d_o} + \frac{1}{d_i} =$	$=\frac{1}{f}$	$M = \frac{h_i}{h_o}$	$M = -\frac{d}{d}$	$\frac{l_i}{l_o}$ $\frac{h_i}{h_o} =$	$-rac{d_i}{d_o}$	$\frac{1}{f} = \left(\frac{n_{lens}}{n_o} - 1\right) \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$		

Types of Lenses

Symbol		Quantity (Unit)		Symbol	Quantity (Unit)	Symbol	Quantity (Unit)
т	Maximum # (integer))	λ	wavelength (m)	d	separation of slits (m)
W_m	Distance of maximum from centre (m)		L	Distance from screen (m)	θ	angle (degrees)	
$m\lambda = \frac{dV}{d}$	V _m L	$m\lambda = d\sin\theta$		oove is for	$m\lambda = 2nd$ thin film interference. rive index of the film		

Solar System Data 2009

	Mercury	Venus	Earth	Mars	Jupiter	Saturn	Uranus	Neptune
Distance from sun (million km)	58	108	150	228	778	1,427	2,871	4,500
Radius (km)	2,500	6,052	6,378	3,397	71,492	60,268	25,559	24,764
Diameter (km)	5,000	12,104	12,756	6,794	142,984	120,536	51,118	49,528
Volume (km ³)	6.1 x 10 ¹⁰	9.2 x 10 ¹¹	1.1 x 10 ¹²	1.6 x 10 ¹¹	1.4 x 10 ¹⁵	8.3 x 10 ¹⁴	6.8 x 10 ¹³	6.3 x 10 ¹³
Mass (kg)	3.3 x 10 ²³	4.9 x 10 ²⁴	6.0 x 10 ²⁴	6.4 x 10 ²³	2.0 x 10 ²⁷	5.7 x 10 ²⁶	8.7 x 10 ²⁵	1.0 x 10 ²⁶
Surface gravity (Earth =1)	0.38	0.91	1.00	0.38	2.53	1.08	0.90	1.14
Rotation	58d	243d	24h	24h	10h	11h	17h	16h
Revolution	88d	225d	365d	1.88y	11.9y	29y	84y	164y
Tilt	0.01	177	23.5	25	3	27	98	28
Temperature (°C)	-173 to 427	462	-88 to 58	-87 to -5	-150	-180	-210	-210
Atmosphere	None	CO ₂ , N	N, O	CO ₂ , N, Ar	H, He	H, He	H, He, CH ₃	H, He, CH ₃
Moons	0	0	1	2	62	60	27	13
Rings	No	No	No	No	Yes	Yes	Yes	Yes

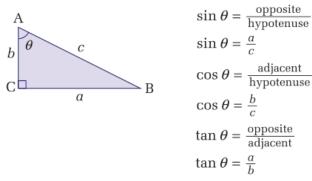
Definition of the Quadratic Formula

The quadratic equation is used to solve for the roots of a quadratic function. Given a quadratic equation in the form $ax^2 + bx + c = 0$, where *a*, *b*, and *c* are real numbers and $a \neq 0$, the roots of it can be found using

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Statistical Analysis

In science, data are collected until a trend is observed. Three statistical tools that assist in determining if a trend is developing are *mean*, *median*, and *mode*.


- Mean: The sum of the numbers divided by the number of values. It is also called the "average."
- Median: When a set of numbers is organized in order of size, the median is the middle number. When the data set contains an even number of values, the median is the average of the two middle numbers.
- Mode: The number that occurs most often in a set of numbers. Some data sets will have

See examples of these on the following page.

Mr. P. MacDonald

Trigonometric Ratios

The ratios of side lengths from a right-angle triangle can be used to define the basic trigonometric function sine (sin), cosine (cos), and tangent (tan).

The angle selected determines which side will be called the opposite side and which the adjacent side. The hypotenuse is always the side across from the 90° angle. Picture yourself standing on top of the angle you select. The side that is directly across from your position is called the *opposite* side. The side that you could touch and is not the hypotenuse is the *adjacent* side.

θ opposite adjacent

A scientific calculator or trigonometry tables can be used to obtain an angle value from the ratio result. Your calculator performs a complex calculation (Maclaurin series summation) when the \sin^{-1} , or \cos^{-1} , or \tan^{-1} operation is used to determine the angle value. \sin^{-1} is not simply a 1/sin operation.

Location	Acceleration due to gravity (m/s ²)	Altitude (m)	Distance from Earth's centre (km)
North Pole	9.8322	0 (sea level)	6357
equator	9.7805	0 (sea level)	6378
Mt. Everest (peak)	9.7647	8850	6387
Mariana Ocean Trench* (bottom)	9.8331	11 034 (below sea level)	6367
International Space Station*	9.0795	250 000	6628

Table 4.3 Free-Fall Accelerations Due to Gravity on Earth

*These values are calculated.

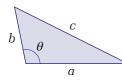
Table 4.4 Free-Fall Accelerations Due to Gravity in the Solar System

Location	Acceleration due to gravity (m/s ²)
Earth	9.81
Moon	1.64
Mars	3.72
Jupiter	25.9

Definition of the Pythagorean Theorem

The Pythagorean theorem is used to determine side lengths of a right-angle (90°) triangle. Given a right-angle triangle ABC, the Pythagorean theorem states

$$c^2 = a^2 + b^2$$


Quantity	Symbol	SI unit
hypotenuse side is		
opposite the 90° angle	С	m (metres)
side a	а	m (metres)
side <i>b</i>	b	m (metres)

Note: The hypotenuse is always the side across from the right (90°) angle. The Pythagorean theorem is a special case of a more general mathematical law called the "cosine law." The cosine law works for all triangles.

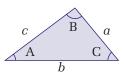
Definition of the Cosine Law

The cosine law is useful when

- determining the length of an unknown side given two side lengths and the contained angle between them
- determining an unknown angle given all side lengths

Angle θ is contained between sides a and b.

The cosine law states $c^2 = a^2 + b^2 - 2ab \cos\theta$.

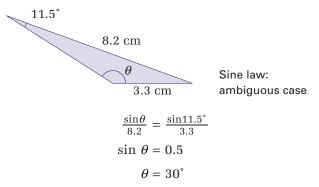

Quantity	Symbol	SI unit
unknown length side <i>c</i>		
opposite angle $ heta$	С	m (metres)
length side a	а	m (metres)
length side b	b	m (metres)
angle θ opposite unknown side c	θ	(radians)

Note: Applying the cosine law to a right angle triangle, setting $\theta = 90^{\circ}$, yields the special case of the Pythagorean theorem.

Definition of the Sine Law

The sine law is useful when

- two angles and any one side length are known
- two side lengths and any one angle are known


Given any triangle ABC the sine law states

$\frac{\sin A}{a} = \frac{-s}{2}$	$\frac{\sin B}{b} = \frac{\sin C}{c}$	
Quantity	Symbol	SI unit
length side a opposite angle A	а	m (metres)
length side b opposite angle B	b	m (metres)
length side <i>c</i> opposite angle C	С	m (metres)
angle A opposite side <i>a</i>	А	(radians)
angle B opposite side b	В	(radians)
angle C opposite side <i>c</i>	С	(radians)

Note: The sine law generates ambiguous results in some situations because it does not discriminate between obtuse and acute triangles. An example of the ambiguous case is shown below.

Example

Use the sine law to solve for θ .

Clearly, angle θ is much greater than 30°. In this case, the supplementary angle is required $(180^{\circ} - 30^{\circ} = 150^{\circ})$. It is important to recognize when dealing with obtuse angles (> 90°) that the supplementary angle might be required. Application of the cosine law in these situations will help reduce the potential for error.

Algebra

In some situations, it might be preferable to use algebraic manipulation of equations to solve for a specific variable before substituting numbers. Algebraic manipulation of variables follows the same rules that are used to solve equations after substituting values. In both cases, to maintain equality, whatever is done to one side must be done to the other.

TRIGONOMETRIC IDENTITIES

• Reciprocal identities

$$\sin u = \frac{1}{\csc u} \quad \cos u = \frac{1}{\sec u}$$
$$\tan u = \frac{1}{\cot u} \quad \cot u = \frac{1}{\tan u}$$
$$\csc u = \frac{1}{\sin u} \quad \sec u = \frac{1}{\cos u}$$

• Pythagorean Identities

$$\sin^2 u + \cos^2 u = 1$$
$$1 + \tan^2 u = \sec^2 u$$
$$1 + \cot^2 u = \csc^2 u$$

• Quotient Identities

$$\tan u = \frac{\sin u}{\cos u} \quad \cot u = \frac{\cos u}{\sin u}$$

- Co-Function Identities $\sin(\frac{\pi}{2} - u) = \cos u \quad \cos(\frac{\pi}{2} - u) = \sin u$ $\tan(\frac{\pi}{2} - u) = \cot u \quad \cot(\frac{\pi}{2} - u) = \tan u$ $\csc(\frac{\pi}{2} - u) = \sec u \quad \sec(\frac{\pi}{2} - u) = \csc u$
- Parity Identities (Even & Odd)

 $sin(-u) = -sin u \quad cos(-u) = cos u$ $tan(-u) = -tan u \quad cot(-u) = -cot u$ $csc(-u) = -csc u \quad sec(-u) = sec u$

• Sum & Difference Formulas

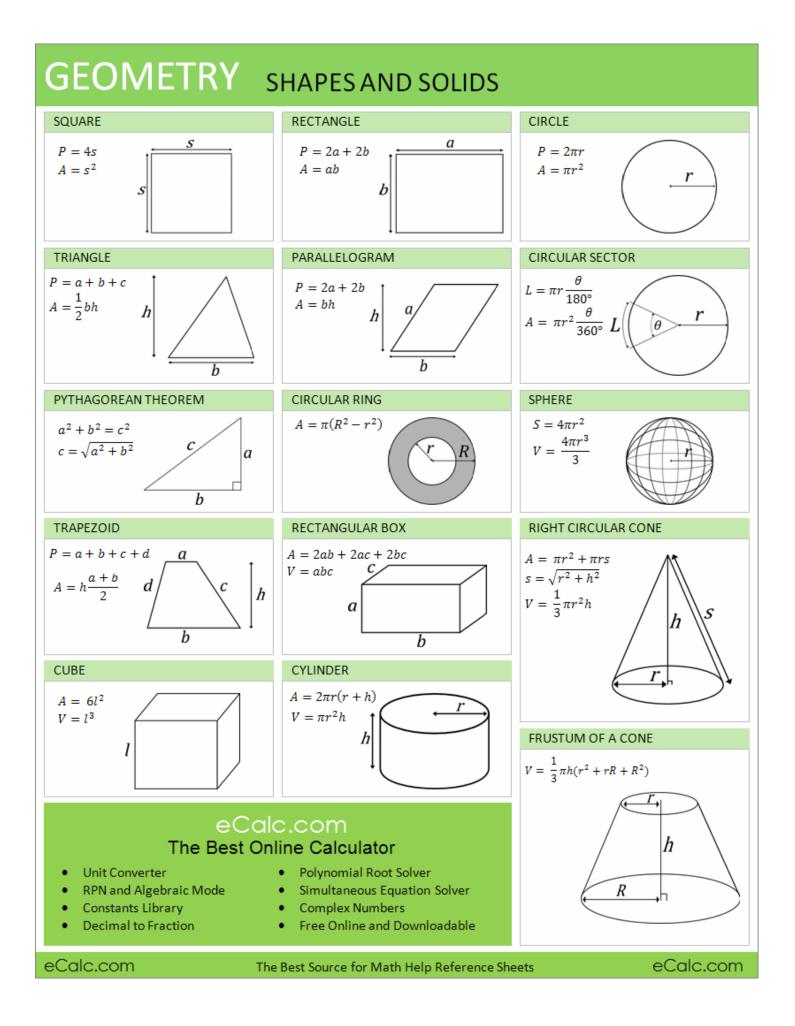
 $\sin(u \pm v) = \sin u \cos v \pm \cos u \sin v$ $\cos(u \pm v) = \cos u \cos v \mp \sin u \sin v$ $\tan(u \pm v) = \frac{\tan u \pm \tan v}{1 \mp \tan u \tan v}$

• Double Angle Formulas

$$\sin(2u) = 2\sin u \cos u$$
$$\cos(2u) = \cos^2 u - \sin^2 u$$
$$= 2\cos^2 u - 1$$
$$= 1 - 2\sin^2 u$$
$$\tan(2u) = \frac{2\tan u}{1 - \tan^2 u}$$

• Power-Reducing/Half Angle Formulas

$$\sin^2 u = \frac{1 - \cos(2u)}{2}$$
$$\cos^2 u = \frac{1 + \cos(2u)}{2}$$
$$\tan^2 u = \frac{1 - \cos(2u)}{1 + \cos(2u)}$$


• Sum-to-Product Formulas

$$\sin u + \sin v = 2\sin\left(\frac{u+v}{2}\right)\cos\left(\frac{u-v}{2}\right)$$
$$\sin u - \sin v = 2\cos\left(\frac{u+v}{2}\right)\sin\left(\frac{u-v}{2}\right)$$
$$\cos u + \cos v = 2\cos\left(\frac{u+v}{2}\right)\cos\left(\frac{u-v}{2}\right)$$
$$\cos u - \cos v = -2\sin\left(\frac{u+v}{2}\right)\sin\left(\frac{u-v}{2}\right)$$

• Product-to-Sum Formulas

$$\sin u \sin v = \frac{1}{2} \left[\cos(u-v) - \cos(u+v) \right]$$
$$\cos u \cos v = \frac{1}{2} \left[\cos(u-v) + \cos(u+v) \right]$$
$$\sin u \cos v = \frac{1}{2} \left[\sin(u+v) + \sin(u-v) \right]$$

$$\cos u \sin v = \frac{1}{2} \left[\sin(u+v) - \sin(u-v) \right]$$

The Metric System: Fundamental and Derived Units

Metric System Prefixes

Prefix	Symbol	Factor
tera	Т	$1\ 000\ 000\ 000\ 000 = 10^{12}$
giga	G	$1\ 000\ 000\ 000 = 10^9$
mega	М	$1\ 000\ 000 = 10^6$
kilo	k	$1000 = 10^3$
hecto	h	$100 = 10^2$
deca	da	$10 = 10^1$
		$1 = 10^0$
deci	d	$0.1 = 10^{-1}$
centi	С	$0.01 = 10^{-2}$
milli	m	$0.001 = 10^{-3}$
micro	μ	$0.000\ 001 = 10^{-6}$
nano	n	$0.000\ 000\ 001 = 10^{-9}$
pico	р	$0.000\ 000\ 000\ 001 = 10^{-12}$
femto	p f	$0.000\ 000\ 000\ 000\ 001 = 10^{-15}$
atto	а	$0.000\ 000\ 000\ 000\ 000\ 001 = 10^{-18}$

Fundamental Physical Quantities and Their SI Units

Quantity	Symbol	Unit	Symbol
length	1	metre	m
mass	т	kilogram	kg
time	t	second	S
absolute temperature	Т	Kelvin	Κ
electric current	Ι	ampère	А
		(amp)	
amount of substance	mol	mole	mol

Derived SI Units

Quantity	Quantity symbol	Unit	Unit symbol	Equivalent unit(s)
area	A	square metre	m^2	
volume	V	cubic metre	m ³	
velocity	V	metre per second	m/s	
acceleration	а	metre per second		
		per second	m/s ²	
force	F	newton	Ν	$kg \cdot m/s^2$
work	W	joule	J	$N \cdot m, kg \cdot m^2/s^2$
energy	E	joule	J	$N \cdot m, kg \cdot m^2/s^2$
power	Р	watt	W	J/s, kg \cdot m ² /s ³
density	ρ	kilogram per cubic metre	kg/m ³	
pressure	р	pascal	Pa	N/m ² , kg/(m \cdot s ²)
frequency	$p \\ f$	ĥertz	Hz	s ⁻¹
period	T	second	s	
wavelength	λ	metre	m	
electric charge	Q	coulomb	С	A · s
electric potential	V	volt	V	W/A, J/C,
_				$kg \cdot m^2/(C \cdot s^2)$
resistance	R	ohm	Ω	V/A,
				$kg \cdot m^2/(C^2 \cdot s)$
magnetic field intensity	В	tesla	Т	$N \cdot s/(C \cdot m), N/(A \cdot m)$
magnetic flux	Φ	weber	Wb	$V \cdot s, T \cdot m^2, m^2 \cdot kg/(C \cdot s)$
radioactivity	$\Delta N/\Delta t$	becquerel	Bq	s ⁻¹
radiation dose		gray	Gy	$J/kg \cdot m^2/s^2$
temperature (Celsius)	Т	degree Celsius	°Č	$T^{\circ}C = (T + 273.15) \text{ K}$
		atomic mass unit	u	$1u = 1.660 566 \times 10^{-27} \text{ kg}$
		electron volt	eV	$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$

Physical Constants and Data

Fundamental Physical Constants

Quantity	Symbol	Accepted value
speed of light in a vacuum	С	$2.998 \times 10^8 \text{ m/s}$
gravitational constant	G	$6.673 imes 10^{-11} \mathrm{N} \cdot \mathrm{m^2/kg^2}$
Coulomb's constant	k	$8.988 imes 10^9 \ { m N} \cdot { m m}^2/{ m C}^2$
charge on an electron	е	$1.602 \times 10^{-19} \mathrm{C}$
rest mass of an electron	me	$9.109 imes 10^{-31} ext{ kg}$
rest mass of a proton	$m_{ m p}$	$1.673 \times 10^{-27} \text{ kg}$
rest mass of a neutron	m _n	$1.675 \times 10^{-27} \text{ kg}$
Planck's constant	h	$6.626 \times 10^{-34} \text{ J} \cdot \text{s}$

Electric Circuit Symbols

	-A-	_ @	
switch (open)	ammeter	light bulb	
	- v -		conductors crossing (no contact)
switch (closed)	voltmeter	DC generator	_ \ _
⊢⊖⊫	-M-	_@	conductors crossing (with contact)
cell	motor	AC generator	(with contact)
	≏₩₽	≏₩₩	÷
resistance	battery (PC power supply)	variable power supply	ground
	or		
	variable re:	sistance	

Other Physical Data

Quantity	Symbol	Accepted value
standard atmospheric pressure	Р	$1.013 imes 10^5$ Pa
speed of sound in air		343 m/s (at 20°C)
water: density (4°C)		$1.000 \times 10^3 \text{ kg/m}^3$
latent heat of fusion		$3.34 imes 10^5$ J/kg
latent heat of vaporization		$2.26 \times 10^{6} \text{ J/kg}$
specific heat capacity (15°C)		4186 J/(kg°C)
kilowatt hour	E	$3.6 imes 10^6$ J
acceleration due to Earth's gravity	g	9.81 m/s ² (standard value; at sea level)
mass of Earth	$m_{ m E}$	$5.98 imes 10^{24} ext{ kg}$
mean radius of Earth	$r_{\rm E}$	$6.38 imes 10^6 \mathrm{m}$
mean radius of Earth's orbit	$R_{ m E}$	$1.49 \times 10^{11} \text{ m}$
period of Earth's orbit	$T_{ m E}$	$365.25 \text{ days or } 3.16 \times 10^7 \text{ s}$
mass of Moon	m _M	$7.36 imes 10^{22} \text{ kg}$
mean radius of Moon	$r_{\rm M}$	$1.74 imes 10^6 \mathrm{m}$
mean radius of Moon's orbit	$R_{\rm M}$	$3.84 \times 10^8 \text{ m}$
period of Moon's orbit	T_{M}	27.3 days or 2.36×10^{6} s
mass of Sun	ms	$1.99 imes 10^{30} \text{ kg}$
radius of Sun	r _s	$6.96 imes 10^8 \mathrm{m}$

Resistor Colour Codes

Colour	Digit represented	Multiplier	Tolerance
black	0	× 1	
brown	1	$ imes 1.0 imes 10^1$	
red	2	$ imes 1.0 imes 10^2$	
orange	3	$ imes 1.0 imes 10^3$	
yellow	4	$ imes 1.0 imes 10^4$	
green	5	$ imes 1.0 imes 10^5$	
blue	6	$ imes 1.0 imes 10^{6}$	
violet	7	$ imes 1.0 imes 10^7$	
gray	8	$ imes 1.0 imes 10^8$	
□ white	9	$ imes 1.0 imes 10^9$	
gold		$ imes 1.0 imes 10^{-1}$	5%
silver		$ imes 1.0 imes 10^{-2}$	10%
no colour			20%