Work in groups of up to three. Answer questions and copy graphs in MS Word.

1. **We will do as a class** Set up a Microsoft Excel spreadsheet to analyze the velocity of an object undergoing a constant acceleration in two dimensions (might help to visualize a boat on the water being blown by the wind).
a. Make the $\vec{v}_{o}=15 \mathrm{~m} / \mathrm{s}$ [E40 N] and $\vec{a}=6.5 \mathrm{~m} / \mathrm{s}^{2}\left[\mathrm{~W} 60^{\circ} \mathrm{S}\right.$]
b. Graph the components of \vec{v}_{f} versus time on the same set of axis.
c. Graph the magnitude of \vec{v}_{f} versus time.
2. Program the Excel sheet from \#1 to analyze the final position, \vec{d}_{f}, and its components. Have it so \vec{d}_{o} can be adjusted, but to start have $\vec{d}_{o}=0.0 \mathrm{~m}$ [EO ${ }^{\circ} \mathrm{N}$].
a. Graph \vec{d}_{f} versus time.
b. Graph $d_{f N}$ versus $d_{f E}$ (that is the actual path taken by the object; x-axis should be your East data).
c. Change $\vec{d}_{o}=35 \mathrm{~m}\left[E 62^{\circ} \mathrm{S}\right]$ and graph $d_{f N}$ versus $d_{f E}$.
d. Reset \vec{d}_{o} to 0.0 [EO ${ }^{\circ} N$]. Change the angle of the initial velocity to 60° and then 80°; compare the paths of the boats. Do such paths make sense?
e. Look at the direction of the velocity and displacement at each time step. Explain why they are not the same.
3. Use Excel to generate data for $\boldsymbol{v}_{f}, \boldsymbol{v}_{f E}, \boldsymbol{v}_{f N}, d_{f}, d_{f E}$, and $d_{f N}$ of the following situation (take $\vec{d}_{o}=0.0 \mathrm{~m}\left[E O^{\circ} \mathrm{N}\right]$) with a 0.5 second $t_{\text {step }}$:
i. $0 \leq t \leq 10: v_{0}=50 \mathrm{~m} / \mathrm{s}\left[E 10^{\circ} \mathrm{N}\right], a=7.5 \mathrm{~m} / \mathrm{s}^{2}\left[\mathrm{~W} 60^{\circ} \mathrm{N}\right]$
ii. $10 \leq t \leq 25: a=9.0 \mathrm{~m} / \mathrm{s}^{2}\left[\mathrm{~W} 60^{\circ} \mathrm{S}\right],\left(d_{f}\right.$ and v_{f} from i at 10 s are important)
iii. $25 \leq t \leq 50: a=5.0 \mathrm{~m} / \mathrm{s}^{2}\left[E 50^{\circ} \mathrm{N}\right]$, (d_{f} and v_{f} from ii at 25 s are important)
b. Plot $\mathbf{v}_{\mathrm{f}} \mathrm{vs} \boldsymbol{t}$.
c. Plot $d_{f} \vee s t$.
d. Plot $d_{f N}$ vs $d_{f E}$.
