Work in groups of up to three. Answer questions and copy graphs in MS Word.

- **We will do as a class** Set up a Microsoft Excel spreadsheet to analyze the velocity of an object undergoing a constant acceleration in two dimensions (might help to visualize a boat on the water being blown by the wind).
 - a. Make the \vec{v}_o = 15 m/s [E40°N] and \vec{a} = 6.5 m/s² [W60°S]
 - b. Graph the components of \vec{v}_f versus time on the same set of axis.
 - c. Graph the magnitude of \vec{v}_f versus time.
- 2. Program the Excel sheet from #1 to analyze the final position, \vec{d}_f , and its components. Have it so \vec{d}_o can be adjusted, but to start have $\vec{d}_o = 0.0$ m [E0°N].
 - a. Graph \vec{d}_f versus time.
 - b. Graph d_{fN} versus d_{fE} (that is the actual path taken by the object; x-axis should be your East data).
 - c. Change \vec{d}_o = 35 m [E62°S] and graph d_{fN} versus d_{fE} .
 - d. Reset \vec{d}_o to 0.0 [E0°N]. Change the angle of the initial velocity to 60° and then 80°; compare the paths of the boats. Do such paths make sense?
 - e. Look at the direction of the velocity and displacement at each time step. Explain why they are not the same.
- 3. Use Excel to generate data for v_{f} , v_{fE} , v_{fN} , d_{f} , d_{fE} , and d_{fN} of the following situation (take $\vec{d}_{o} = 0.0 \text{ m} [\text{E0}^{\circ}\text{N}]$) with a 0.5 second t_{step} :
 - i. $0 \le t \le 10$: $v_0 = 50 \text{ m/s} [E10^{\circ}\text{N}]$, $a = 7.5 \text{ m/s}^2 [W60^{\circ}\text{N}]$
 - ii. $10 \le t \le 25$: a = 9.0 m/s² [W60°5], (d_f and v_f from i at 10 s are important)
 - iii. $25 \le t \le 50$: a = 5.0 m/s² [E50°N], (d_f and v_f from ii at 25 s are important)
 - b. Plot **v**f vs **t**.
 - c. Plot **d**f vs **t**.
 - d. Plot d_{fN} vs d_{fE} .