Three Types of Force Problems

- 1 Pushing or pulling an object along a horizontal surface.
- 2 Tension and hanging signs.
- 3 Objects on an incline.

Changes from Physics 112:

- > Friction can be opposite applied force.
- > Normal force is not the same value as the force of gravity.
- > We must carefully analyze all the forces.

definition of equlibrium: the state of an object when the vector sum of all the forces acting on it is zero.

If an object is at *rest* and is in *equilibrium*, then we say that it is in a state of "*static equilibrium*."

Equilibrant: is the one vector, when added to 2 or more other vectors produces a state of equilibrium. It is equal to the resultant but opposite in direction.

<u>Try</u> - Three forces act simultaneously on point P. The first force is 10 N east. The second force is 15 N south. The third force is 28 N, E46°S. Find the resultant force. (46 N, E50°S). Find the equilibrant.(46N, W50°N)

Force Problems - Type I

A 55 kg snow blower is pushed along the ground at an angle of $35^{\rm o}$ to the horizontal with an applied force of 175 N.

- a) Find the F_{ax} and F_{ay} .
- b) Calculate F_N.
- c) Find the force of friction if $\mu = 0.19$.
- d) Find the F_{netx}. e) Find a_x.

a)
$$F_{0x} = F_{0x} = G_{0x} = G_{0x}$$

Firsty =
$$F_9 + F_N + F_{ay}$$
 $*F_9 = mg$
 $O = (-539.5) + F_N + (-100.3)$
 $O = -639.8 + F_N$
 $6398N = F_N$

c)
$$F_{\xi} = ?$$

 $F_{\xi} = \mu F_{N}$
 $|F_{\xi}| = (0.19)(639.8)$
 $= 121.6 N$

$$F_{\text{nel}x} = F_{ax} + F_{f}$$

= 143.4 + (-121.6)
= 21.8 N

e)
$$a_x = ?$$
 Find $x = max$
 $21.8 N = (55)ax$
 $0.4 m_2 = ax$

A 35 kg wagon is pulled along the ground at an angle of 25° to the horizontal with an applied force of 97 N.

- a) Find the F_{ax} and F_{ay} .
- b) Calculate F_N.
- c) Find the force of friction if μ = 0.22.
- d) Find the F_{netx} .
- e) Find a_x.

Physics 122/121 Force Problems - Type I

MHR - Chapter 5 - Page 174

- 17. A student pushes a 25 kg lawn mower with a force of 150 N. The handle makes an angle of 35° to the horizontal.
 - (a) Find the vertical and horizontal components of the applied force.
 - (b) Calculate the normal force supporting the lawn mower while it is being pushed.
 - (c) Calculate the net force propelling the mower if a frictional force of 85 N exists.
 - (d) Calculate the horizontal acceleration of the lawn mower. (Remember: Only part of the F_{applied} is parallel to the direction of horizontal acceleration.)

- a) 86 N, down 1.2 x 10² N, right
- b) 3.3 x 10² N, up
- c) 38 N, right
- d) 1.5 m/s², right

- **24.** A toboggan with a mass of 15 kg is being pulled with an applied force of 45 N at an angle of 40° to the horizontal. What is the acceleration if the force of friction opposing the motion is 28 N?
- **25.** A grocery cart is being pushed with a force of $450~\mathrm{N}$ at an angle of 30.0° to the horizontal. If the mass of the cart and the groceries is $42~\mathrm{kg}$,
 - (a) Calculate the force of friction if the coefficient of friction is 0.60.
 - (b) Determine the acceleration of the cart.

0.43 m/s², right

- a) $3.8 \times 10^2 \text{ N}$, left
- b) 0.23 m/s², right

MHR - Chapter 5 - Page 209

- **36.** A 45.0 kg box is pulled with a force of 205 N by a rope held at an angle of 46.5° to the horizontal. The velocity of the box increases from 1.00 m/s to 1.50 m/s in 2.50 s. Calculate
 - (a) the net force acting horizontally on the box.
 - **(b)** the frictional force acting on the box.
 - (c) the horizontal component of the applied force.
 - (d) the coefficient of kinetic friction between the box and the floor.

- a) 9.0 N, right
- b) 132 N, left
- c) 141 N, right
- d) 0.451

#17

Free Body Diagram

(a)
$$F_{ax} = +150\cos(35)$$

= 123 N

$$F_{ay} = -150\sin(35)$$

= -86 N

(b)
$$F_{nety} = F_{ay} + F_g + F_N$$

 $0 = -86 \text{ N} - \text{mg} + F_N$
 $0 = -86 - 25(9.81) + F_N$
 $0 = -86 - 245.25 + F_N$
 $0 = -331.25 + F_N$
 $+330 \text{ N} = F_N$

(c)
$$F_{netx}$$
 = Sum of horizontal forces
= F_{ax} + F_f
= 123 + -85
= + 38 N

(d)
$$F_{net} = ma$$

$$a = \frac{F_{net}}{m}$$

$$a = \frac{+38 N}{25 kg}$$

$$a = +1.5 \text{ m/s}^2$$

24

$$F_{netx} = F_{ax} + F_{f}$$

= 34.5 + (-28)
= + 6.5 N

$$F_{net} = ma$$

$$a = \frac{F_{net}}{m}$$

$$a = +6.5 \text{ N/15 kg}$$

$$a = +0.43 \text{ m/s}^2$$

(a)
$$F_f = \mu F_N, \ \mu = -0.60$$

 $F_{nety} = F_{ay} + F_g + F_N$
 $0 = -412 \ N + -225 \ N + F_N$
 $F_N = +637 \ N$
 $F_f = 0.60(637 \ N)$
 $F_f = 380 \ N \ [left]$

(b)
$$a = \frac{F_{net}}{m} = F_{ax} + F_{f}$$

 $a = (389.7 \text{ N} + -382 \text{ N}) \div 42 \text{ kg}$
 $a = +0.19 \text{ m/s}^{2}$

(a)
$$F_{\text{net}} = \max_{\mathbf{X}} \mathbf{X}$$

$$a = \frac{\Delta v}{\Delta t}$$

$$a = \frac{1.50m/s - 1.00m/s}{2.50s}$$

$$a = 0.20 \text{ m/s}^2$$

$$F_{\text{net}} = (45\text{kg})(0.20\text{m/s}^2)$$

$$= 9.0 \text{ N}$$

(c)
$$F_{ax} = 141 \text{ N}$$

(d)
$$F_{kf} = \mu F_N$$

 $F_{nety} = F_{ay} + F_g + F_N$
 $0 = -441 \text{ N} + 149 \text{ N} + F_N$
 $F_N = +292 \text{ N}$

$$\mu = \frac{F_f}{F_N}$$

$$can use "+132" as the formula implies the formula implies the magnitude of F_f .$$

 $\mu = 10.451$