Vectors & Scalars

<u>Scalars:</u> these quantities have only magnitude.

Ex. 2.0kg, 5.0m/s

Ex. mass, speed, distance, time

<u>Vectors:</u> these quantities have magnitude and direction.

Ex. position, displacement, velocity, acceleration.

Ex. 15km[E], 30m/s[E30°N]

Graphical Representation of Vectors

Vectors are represented by arrows.

- The *length* of the arrow corresponds to the magnitude of the vector.
- The *direction in which the arrow points* represents the direction of the vector.

Vector **A** or \overrightarrow{A} has a magnitude of 5 m and is directed to the right:

Vector **B** or \overrightarrow{B} has a magnitude of 3 m/s² and is directed downward:

Vector **D**, or **D** represents a vector of 95 km, W70∘S:

Adding Vectors Graphically

Method #1: Tip-To-Tail Method

To add vectors graphically, they must first be lined up tip-to-tail.

The vector sum of \mathbf{F} and \mathbf{G} is the vector, \mathbf{R} . It connects the tail of the first arrow to the tip of the last arrow.

Why is the letter **R** used for the vector sum?

Physicists call the vector sum the **resultant vector** or the **resultant**

Why is the graphical method not considered the best method to use when adding vectors?

If the vectors are not drawn precisely, your final answer will not be accurate.

Examples - Graphing Analysis of Vectors

Let the magnitudes of vector **A** and vector **B** be 8.0 m and 6.0 m, respectively.

★ Choose a scale.

Let 1.0 cm = 1.0 m

a) If vector **A** and vector **B** are both directed East, what is the angle between the vectors? What is the magnitude and direction of their resultant?

b) If vector **A** is directed East and vector **B** is directed North, what is the angle between the vectors? What is the magnitude and direction of their resultant?

Angle between the vectors: 90

c) If Vector **A** is directed West and vector **B** is directed East, what is the magnitude and direction of their resultant?

R = 2.0 m, West = -2.0 m, East

Example 1: Find the resultant displacement if $vector \mathbf{A} = 24 \text{ km}$ [E] and $vector \mathbf{B} = 32 \text{ km}$ [E60°N].

Scale: Let 1.0 cm = 4.0 km

Resultant Vectors Worksheet - Solutions

- #1) 1:4, 29 km [E58S]
- #2) 1:1, 5.4 m/s [E50N]
- #3) 1:5, 42.5 m [W30N]
- #4) 1:2, 20.4 m [W70N]
- #5) 1:10, 127 km [E42N]
- #6) 1:300, 2800 km [W45S]