## Section 8.2

## Properties of Chords in Circles



- A line segment that joins two points on a circle is a chord.
- A diameter of a circle is a chord through the
 centre of the circle.


## Perpendicular to a Chord Property 1

- A line drawn from the centre of a circle that is perpendicular to a chord bisects the chord. (It cuts the chord into two equal parts.)

$$
\begin{aligned}
& \angle \mathrm{OCA}=\angle \mathrm{OCB}=90^{\circ} \\
& \mathrm{AC}=\mathrm{CB}
\end{aligned}
$$



## Perpendicular to a Chord Property 2

- The perpendicular bisector of a chord in a circle passes through the centre of the circle.

$$
\begin{aligned}
& \text { When } \angle \mathrm{SPR}=\angle \mathrm{SPQ}=90^{\circ} \\
& \text { and } \mathrm{RP}=\mathrm{PQ} \text {, then } \mathrm{SP} \text { passes } \\
& \text { through the centre. }
\end{aligned}
$$



## Perpendicular to a Chord Property 3

- A line that joins the centre of a circle and the midpoint of a chord is perpendicular to the chord.

```
When O is the centre and \(\mathrm{EP}=\mathrm{PF}\), then
\(\angle \mathrm{OGE}=\angle \mathrm{OGF}=90^{\circ}\).
```




## Determining the Measure of Angles in a Triangle

 Example \#1. Determine the values of $x^{\circ}$ and $y^{\circ}$.

Therefore, $\mathrm{y}^{\mathrm{o}}=57^{\circ}$
To find angle x:
We know the radii are equal, so $\Delta \mathrm{AOB}$ is isosceles.
Then, $\angle \mathrm{OBA}=\angle \mathrm{OAB}$
Therefore, $x^{0}=33^{\circ}$ 9

