## Newton's Second Law of Motion

Newton's second law can be formally stated as:

The acceleration of an object produced by a net force is:

• directly proportional to the magnitude of the net force

a 
$$\alpha$$
  $F_{net}$ 

• inversely proportional to the mass of the object



Remember: The acceleration of an object has the same direction as the net force acting on the object.

## **Sample Problems**

An object is accelerating at 2.0 m/s<sup>2</sup> east.

1. If the net force is tripled, what is the object's new acceleration?

$$a = \frac{F}{M}$$
, if  $F \times 3$  then  $a \times 3$   
So  $a = 6.0 \,\text{m/s}^2$ 

2. If the net force is halved, what is the object's new acceleration?

3. If the net force is tripled and the mass is quadrupled, what is the object's new acceleration?

$$a = \frac{F}{M}$$

$$F_{x^3} \leq a \qquad a_{\frac{3}{4}} \qquad a = 1.5 m_{x^3}$$

$$m_{x^4} \qquad a = 1.5 m_{x^3}$$

What is the acceleration of a 12 kg cart under a constant force of 88 N?

$$a = \frac{E}{m}$$
 $a = \frac{88N}{12Kg}$ 
 $a = \frac{7.3 \text{ m/s}}{12Kg}$ 

A force of 1200 N accelerates an object at 21 m/s<sup>2</sup>. What is the mass of the object?

$$F=ma \qquad m=\frac{1200N}{2lm/s^2} - \frac{57kg}{57kg}$$

What average force is required to accelerate a 33 kg mass at 4.6 m/s<sup>2</sup>?

$$F = m \alpha$$
 $F_{aug} = (33 \text{ Kg})(4.6 \text{ m/s}^2)$ 
 $F_{aug} = 152 \text{ N}$ 

An applied force of 50 N is used to accelerate an object to the right across a frictional surface. The object encounters 10 N of friction. The weight of the object is 80 N.

- (a) Calculate the objects mass. (8.2 kg)
- (b) Calculate the net force. (40 N to the right)
- (c) Calculate the object's acceleration. (4.9 m/s² to the right)



(a) 
$$F_g = 80 \text{ N} = \text{mg}$$
  
 $80 = m(9.81)$   
 $M = 8.2 \text{ kg}$ 

(c) 
$$F = ma$$
  
 $a = \frac{40}{8.2} = \frac{40}{9.2} = \frac{40}{9.2}$ 

A 2.5 kg object falls on an air mattress. Just as it hit it was traveling 19 m/s. The air mattress depressed 0.75 m before coming to a stop. What was the average force

stopping the object?



$$m = 2.5 \text{ Kg}$$
 $V_0 = -19 m/s$ 
 $d_1 = -0.75 m$ 

$$d_0 = 0.0 \text{m}$$
 $a = -9.8 \text{lm/}^2$ 

$$V_f^2 = V_o^2 + 2\vec{a}(\vec{J}_f - \vec{J}_o)$$

$$(0)^{2} = (-19)^{2} + 2a(-0.75 - 0)$$

$$0 = 361 - 1.5a$$

$$-361 = -1.5a$$

$$\frac{-361}{-1.5} = 2$$

Fret = 
$$ma$$
  
Fret =  $(2.5)(241)$   
Fret =  $602 N$