
S.I.K.
BINDER

#
Table of Contents

1. Getting started
About S.I.K. Documentation
Installing Arduino & Fritzing
Arduino Hardware Setup
Basic Arduino Reference
Basic Arduino Pin Reference

2. Electrical
What’s a Breadboard?
Analog and Digital
Input and Output with Activity
How do the Circuits Work? Circuit # 1 - # 14
Resistance
Voltage Drop
Transistor
Voltage Divider
Pulse Width Modulation

3. Programming
Basic Operators and Comments
Variables with Worksheets
Declaring and Assigning
Variable Type Boolean
Variable Type Int
Variable Type Char
Variable Activity
If Statements with Worksheets
If Statements
Pseudo-code If Statements
If Statements Activity
Repetition
Repetition Types
loop ()
while ()
for ()
Nested Repetition
Repetition Activity

4. Serial
Serial Basics
Serial Communication
Serial Debugging and Troubleshooting

5. Logic Flow/Schematics
Logic Flow Charts w/ Worksheets
Schematics

6. Circuit Worksheets
Middle School Worksheets S.I.K. Circuits 1 - 14
High School Worksheets Circuits 1 – 14
Additional Pulse Width Modulation Worksheets

Table of Contents //

3

12

53

77

86

93

Chapter Page

167

183
193
201
291

Page
7. Additional Applications
Virtual Prototyping with Fritzing

8. Common Core Standards

9. Advanced Section

10. Answers

11. Glossary

SIK BINDER //1

SIK BINDER //2

SIK BINDER //3

1
Getting Started

SIK BINDER //4

Sparkfun Inventor’s Kit
Teacher’s Helper

These worksheets and handouts are supplemental material
intended to make the educator’s job a little easier by providing
easily editable content. You can use these files however you
see fit. Add a question here, delete a question there and
definitely add some graphics if you like. The worksheets are
intended for use after completion of the SparkFun Inventor’s
Kit or as you go along. There is no particular order so you
can use whichever worksheets you wish, whenever you think
is best.
	
The SparkFun Inventor’s Kit is a great introductory tool to
get people interested in electronics and physical computing.
This is the first collection of worksheets that pertain to the
SparkFun Iventors Kit. We would appreciate any feedback
you feel would be useful. Topics we missed, projects you
put together using the SparkFun Inventor’s Kit, typos, gripes,
material you have put together about this type of technology
that you would like to share or stuff that was really, really
useful. Basically we want you and your students to eventually
be able to build robots that can sing, dance and take over
the world... or at least your imagination.

Included material:

• Worksheets and handouts for S.I.K. circuits 1 – 14
• Answers to worksheets (creative answers left blank, 	
 Ohm’s Law answers may vary)
• Expansion code for use in Arduino
• Images to create your own schematics
• Surveys for teachers and students to aid in development 	
 of material
• Fritzing (virtual prototyping software)

This material is a work in progress - feel free to contribute
if you are so inclined.

Send feedback, worksheets or completed
surveys to:

EdMaterials@Sparkfun.com

Attention Lindsay Craig
Department of Education
6175 Longbow Drive
Boulder, Colorado 80301

Material by: Lindsay Craig, Jim “The Engineer” Lindblom,
and Ben Leduc-Mills
Design and Layout by: Nic Bingham
Images by: Nic Bingham, Dave Stadler and Lindsay Craig
Proofed by: Ben Leduc-Mills, Lindsay Craig, Jim “The
Engineer” Lindblom, Chris “Cmac” McGrady, Michelle
Shorter, Toni Klopfenstein, SparkFun’s IT department, David
Stadler, Jeff Branson, Lindsay Levkoff, Amanda Clark, and
other equally awesome people.

This work is licensed under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

To view a copy of this license visit:
http://creativecommons.org/licenses/by-nc-sa/3.0/

Or send a letter to:
Creative Commons, 171 Second Street, Suite 300, San
Francisco, California

To attribute this work please copy and paste the
following into your credits section:

Created from SparkFun Electronic’s SIK Binder

Material by: Lindsay Craig, Jim “The Engineer” Lindblom,
and Ben Leduc-Mills
Design and Layout by: Nic Bingham
Images by: Nic Bingham, Dave Stadler and Lindsay Craig
Proofed by: Ben Leduc-Mills, Lindsay Craig, Jim “The
Engineer” Lindblom, Chris “Cmac” McGrady, Michelle
Shorter, Toni Klopfenstein, SparkFun’s IT department, David
Stadler, Jeff Branson, Lindsay Levkoff, Amanda Clark, and
other equally awesome people.

This work is licensed under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

To view a copy of this license visit:
http://creativecommons.org/licenses/by-nc-sa/3.0/

Or send a letter to:
Creative Commons, 171 Second Street, Suite 300, San
Francisco, California

SIK BINDER //5

CHAPTER 1
Getting started with Arduino

// Installing Arduino // Installing Fritzing
Mac platform

1. Double click the file arduino-0022.dmg inside the folder
\SIK Applications\Mac\

2. Go to “Arduino” in the devices section of the finder and
move the “Arduino” application to the “Applications” folder.

3. Go to the “Arduino” device, double click and install:
“FTDI drivers for Intel Macs 0022.pkg”
or
“FTDI drivers for PPC Macs 0022.pkg”
then Restart your computer.

4. Plug your Arduino board into a free USB port using the
USB cord provided.

PC platform

1. Unzip the file arduino-0022 inside the folder \SIK
Applications\PC\. We recommend unzipping to your c:\
Program Files\ directory.

2. Open the folder containing your unzipped Arduino files and
create a shortcut to Arduino.exe. Place this on your desktop
for easy access.

3. Plug your Arduino board into a free USB port using
the USB cord provided. Wait for a pop up box about installing
drivers.

4. Skip “searching the internet.” Click “Install from a list
or specific location” in the advanced section. Choose the
location c:\program files\arduino-0022\drivers\Arduino Uno\

(You may have to do this last step more than once) (If
you are using the Duemilanove you will have to choose
the sub-directory, FTDI USB Drivers and you will have
to do this twice)

If you are having issues with Java make sure you have
the latest version of Java installed. If not you’re ready
to open the Arduino programming environment.

(For Linux info go to
www.arduino.cc/playground/learning/linux)

Mac platform

1. Move the Fritzing folder from \SIK Applications\Mac\ to
somewhere convenient on your computer.

2. Double click the file: fritzing.2010.09.30.mac

PC platform

1. Move the Fritzing file from \SIK Applications\PC\ to
somewhere convenient on your computer.

2. Double click the file: fritzing.2010.09.30.pc

You’re ready to start using Fritzing for virtual prototyping.

SIK BINDER //6

// A few notes about setup

A few more tidbits that will help to know
There are seven buttons at the top of your Arduino
window, and these are their functions:

Serial Monitor
Used to display Serial Communication.

Upload
This uploads the sketch to your Arduino.

Save
This saves the open sketch.

Open
This opens an existing sketch.

New
This creates a new sketch.

Stop
This stops the program.

Compile
This checks your code for errors.

Selecting Your Board

You are using the SparkFun RedBoard with an ATmega 328
microcontroller. This means you will need to select “Arduino
Uno” as your board. To do this you click on the “Tools”
menu tab, then click the “Board” tab and select “Arduino
Uno”. If you are using a different board you will need
to select the correct model in order to properly upload
to your board.

Selecting Your Com Port

Another option that is necessary to change occasionaly is
your “Serial Port”. This can also be found under the “Tools”
menu tab. When you click on this tab you should be presented
with at least one com port labeled “COM1” (or “COM2,”
etc....) This indicates which USB port your board is plugged
into. Sometimes you will need to make sure you
are using the correct com port. Here is some
information on your com ports depending on which platform
you are using:

Mac Platform

The Mac version of the Arduino IDE refreshes your com
port list every time you plug in a device. For this reason
all you really need to do is select the com port called “/
dev/cu.usbserial-XXXX” where XXXX will be a value that
changes.

PC Platform

The PC version of the Arduino IDE creates a new com port
for every distinct board you plug into your computer. You
will need to find out which com port is the board you are
currently trying to use. This is likely to be COM3 or higher
(COM1 and COM2 are usually reserved for hardware serial
ports). To find out, you can disconnect your Arduino board
and re-open the menu; the entry that disappears should
be the Arduino board. Reconnect the board and select that
serial port.

SIK BINDER //7

Installation

Arduino: http://www.arduino.cc/en/Guide/HomePage
Fritzing: http://fritzing.org/download/

Support

Arduino: http://www.arduino.cc, http://www.freeduino.org
Fritzing: http://www.fritzing.org/learning/

Forums

Arduino: http://forum.sparkfun.com/viewforum.php?f=32
Fritzing: http://fritzing.org/forum/

Basic Arduino Code Definitions

setup(): A function present in every Arduino sketch. Run
once before the loop() function. Often used to set pinmode
to input or output. The setup() function looks like:
	 void setup(){
		 //code goes here
		 }

loop(): A function present in every single Arduino sketch.
This code happens over and over again. The loop() is
where (almost) everything happens. The one exception

to this is setup() and variable declaration. ModKit uses
another type of loop called “forever()” which executes over
Serial. The loop() function looks like:
	 void loop() {
		 //code goes here
		 }

input: A pin mode that intakes information.

output: A pin mode that sends information.

HIGH: Electrical signal present (5V for RedBoard). Also ON
or True in boolean logic.

LOW: No electrical signal present (0V). Also OFF or False in
boolean logic.

digitalRead: Get a HIGH or LOW reading from a pin already
declared as an input.

digitalWrite: Assign a HIGH or LOW value to a pin already
declared as an output.

analogRead: Get a value between or including 0 (LOW) and
1023 (HIGH). This allows you to get readings from analog
sensors or interfaces that have more than two states.

analogWrite: Assign a value between or including 0 (LOW)
and 255 (HIGH). This allows you to set output to a PWM value
instead of just HIGH or LOW.

PWM: Stands for Pulse-Width Modulation, a method of
emulating an analog signal through a digital pin. A value
between or including 0 and 255. Used with analogWrite.

Basic Arduino Reference Sheet

RedBoard Pin Type Definitions: (Take a look at your board)

 Basic Arduino Reference Sheet
Installation:
Arduino: http://www.arduino.cc/en/Guide/HomePage
Fritzing: http://fritzing.org/download/

Support:
Arduino: http://www.arduino.cc, http://www.freeduino.org, google.com
Fritzing: http://www.fritzing.org/learning/

Forums:
Arduino: http://forum.sparkfun.com/viewforum.php?f=32
Fritzing: http://fritzing.org/forum/

Basic Arduino code definitions:

 setup(): A function present in every Arduino sketch. Run once before the loop()
 function. Often used to set pinmode to input or output. The setup() function looks like:
 void setup(){
 //code goes here
 }

loop(): A function present in every single Arduino sketch. This code happens over and
over again. The loop() is where (almost) everything happens. The one exception to
this is setup() and variable declaration. ModKit uses another type of loop called
“forever()” which executes over Serial. The loop() function looks like:

 void loop() {
 //code goes here
 }

 input: A pin mode that intakes information.

 output: A pin mode that sends information.

 HIGH: Electrical signal present (5V for Uno). Also ON or True in boolean logic.

 LOW: No electrical signal present (0V). Also OFF or False in boolean logic.

 digitalRead: Get a HIGH or LOW reading from a pin already declared as an input.

 digitalWrite: Assign a HIGH or LOW value to a pin already declared as an output.

 analogRead: Get a value between or including 0 (LOW) and 1023 (HIGH). This allows
 you to get readings from analog sensors or interfaces that have more than two states.

 analogWrite: Assign a value between or including 0 (LOW) and 255 (HIGH). This
 allows you to set output to a PWM value instead of just HIGH or LOW.

 PWM: Stands for Pulse-Width Modulation, a method of emulating an analog signal
 through a digital pin. A value between or including 0 and 255. Used with analogWrite.

Arduino Uno pin type definitions: (Take a look at your Arduino board)

Reset 3v3 5v Gnd Vin Analog In RX/TX Digital PWM(~) AREF
Resets
Arduino
sketch
on
board

3.3
volts
in
and
out

5
volts
in
and
out

Ground Voltage
in for
sources
over 7V
(9V - 12V)

Analog
inputs, can
also be
used as
Digital

Serial
comm.
Receive
and
Transmit

Input or
output,
HIGH or
LOW

Digital
pins with
output
option of
PWM

External
reference
voltage
used for
analog

CHAPTER 1
Getting started with Arduino

SIK BINDER //8

Basic Arduino Pin Reference Sheet

SparkFun RedBoard

Power In (USB)

ARef

Ground

LED indicating
Arduino is on

ICSP pins, for uploading
code without a bootloader

RX/TX

Reset

Analog In

Power In

Ground

Reset

Power Out
(3.3v and 5v)

Power In
(Barrel Jack)

Digital In/Out

LEDs indicating
Arduino is transmitting

(TX) or receiving (RX)
data via serial

Built in LED connected to
Arduino pin #13, used for

troubleshooting

CHAPTER 1
Getting started with Arduino

Red lines indicate which pins are PWM compatible.

SIK BINDER //9SIK BINDER //9

Basic Arduino Pin Reference Sheet

Red lines indicate which pins are PWM compatible.

Arduino Lilypad

Ground

Ground
Reset

RX/TX

Power In

Power In

Analog In

Digital In/Out

Digital In/Out

CHAPTER 1
Getting started with Arduino

This board uses the same microcontroller
as the Arduino Uno, just in a different
package. The Lilypad is designed for use
with conductive thread instead of wire. Other
boards in the Arduino family can be found at
http://arduino.cc/en/Main/Hardware

SIK BINDER //10 SIK BINDER //10

Basic Arduino Pin Reference Sheet

Arduino Mini

Ground

Reset

RX/TX

RX/TX Power In

Power In

Ground

Ground

Power In

Reset

Analog In

Reset

Digital In/OutDigital In/Out

CHAPTER 1
Getting started with Arduino

This board uses the same microcontroller as
the Arduino Uno, just in a different package.
The Arduino Mini is a smaller package without
the USB, Barrel Jack and Power Outs. Other
boards in the Arduino family can be found at
http://arduino.cc/en/Main/Hardware

Red lines indicate which pins are PWM compatible.

SIK BINDER //11

SIK BINDER //12

2
Electrical

SIK BINDER //13

Electrical

SIK BINDER //14

Example of parallel circuit.
Two LEDs and a resistor.

Example of series
circuit. Three LEDs.

Battery (power source)

Terminal strips
(conducts horizontally -
“a” through “e”, and “f” through “j”)

Power supply connections
(conducts vertically - from top to bottom)

This line divides the board in
half. Electricity will not

conduct through this vertical

CHAPTER 2
Breadboard Basics

// How it works

One of the most important tools for electrical prototyping and
invention is the breadboard. It’s not a piece of bread that you
stick electronics into, it’s a piece of plastic with holes to place
wires into and copper connecting the holes so electricity can
get to all the pieces you are working with. But not all the
holes are connected! Above is a diagram and explanation of
how a breadboard works as well as examples of parallel and
series circuits. Not sure what parallel and series circuits are?
Don’t worry! The important thing is learning how to use the
breadboard so you can play around with some electronics.

The labels on the picture of this breadboard show you which
holes are connected and allow electricity to flow between
them without anything else connecting them. This is made
possible by strips of copper on the underside of the board.
The power supply connections have a + and – indicating how
to hook up your power source. The connections for the power
supply run up and down. The terminal strips are labeled “a”
through “j”, these connections run across the board, but are
broken down the middle. This cuts the connection across
the entire terminal area in half, giving you two unconnected
sections to work with.

SIK BINDER //15

 // Series
Series

// Parallel Parallel

Because the copper plating below the power supply
connections and the terminal connections conduct electricity
there are many different ways to hook up the same circuit
and make it work. All that matters is that the electricity can
flow through the entire circuit from power (+) to ground (-).

This is an example of the same two circuits from the previous
page hooked up in different ways that still work the same.
There are many differences between this picture and the
previous one. First of all, at the very top there is a wire
connecting the positive (+) power terminal on the left with
the positive (+) power terminal on the right. Now it is
possible to supply power to your circuits from either side
of the board. That’s why this example of a parallel circuit
has a red wire stretching all the way to the positive (+)
power terminal on the right side. What would you do if you
wanted to use the ground (-) power terminal on the right
side of the board?

Another thing that has changed in the parallel
circuit example is the position of the resistor. In the
previous image, the resistor went from the row with the
negative LED connections to the row below
with a wire connecting that f inal row to the
ground (-) power terminal. This is an example of tossing
out a wire because you can use the wires coming out of
components to plug directly into the power terminals. You
can do the same thing with your LEDs if you like, try it out.

Lastly, the positions of the LEDs have changed in both
examples. This is because it doesn’t matter where the LEDs
are positioned to the left or right (columns “a” through “e”),
as long as they are plugged into the correct rows (up and
down).

CHAPTER 2
Breadboard

Name:
Date:

SIK BINDER //16

Here are some quick questions to make sure you understand the breadboard:
1. Circle the power terminals below, make sure you get all
of them.

2. Draw wires to complete six LED circuits that will work.
Each circuit needs either a total of three LEDs or two LEDs
and a resistor. Use all power terminals at least once and
don’t forget to hook up your battery.

3. Inside the dotted lines draw lines to show where electricity
will conduct without plugging anything else in.

CHAPTER 2
Breadboard

Name:
Date:

SIK BINDER //17

CHAPTER 2
Analog and Digital

Name:
Date:

All of the electrical signals that the RedBoard works with
are either Analog or Digital. It is extremely important to
understand the difference between these two types of
signal and how to manipulate the information these signals
represent.

// Analog
A continuous stream of information with values
between and including 0% and 100%.

Humans perceive the world in analog. Everything
we see and hear is a continuous transmission of
information to our senses. The temperatures we perceive
are never 100% hot or 100% cold, they are constantly
changing between our ranges of acceptable temperatures.
This continuous stream is what defines analog data. Digital
information, the complementary concept to Analog, estimates
analog data using only ones and zeros.

In the world of Arduino an analog signal is simply a signal
that can be HIGH (on), LOW (off) or anything in between these
two states. This means an Analog signal has a voltage value
that can be anything between 0V and 5V (unless you mess
with the Analog Reference pin). Analog allows you to send
output or receive input about devices that run at percentages
as well as on and off. The RedBoard does this by sampling
the voltage signal sent to these pins and comparing it to a
voltage reference signal (5V). Depending on the voltage of
the Analog signal when compared to the Analog Reference
signal the RedBoard then assigns a numerical value to the
signal somewhere between 0 (0%) and 1023 (100%). The
digital system of the RedBoard can then use this number in
calculations and sketches.

To receive Analog Input the Arduino uses Analog pins # 0
- # 5. These pins are designed for use with components
that output Analog information and can be used for Analog

Input. There is no setup necessary and to read them use
the command:
	 analogRead(pinNumber);
where pinNumber is the Analog In pin to which the the Analog
component is connected. The analogRead command will
return a number including or between 0 and 1023.

The RedBoard also has the capability to output a digital signal
that acts as an Analog signal, this signal is called Pulse Width
Modulation (PWM). Digital Pins # 3, # 5, # 6, # 9, # 10 and
#11 have PWM capabilities. To output a PWM signal use
the command:
	 analogWrite(pinNumber, value);
where pinNumber is a Digital Pin with PWM capabilities and
value is a number between 0 (0%) and 255 (100%). On
the Arduino UNO PWM pins are signified by a ~ sign. For
more information on PWM see the PWM worksheets or S.I.K.
circuit 12.

Examples of Analog:

Values: Temperature, volume level, speed, time, light, tide
level, the list goes on....
Sensors: Temperature sensor, Photoresistor, Microphone,
Turntable, Speedometer, etc....

Things to Remember about Analog:

Analog Input uses the Analog In pins, Analog Output uses
the PWM pins
To receive an Analog signal use: 				
	 analogRead(pinNumber);	
To be able to send a PWM signal use:
 	 analogWrite(pinNumber, value);
Analog Input values range from 0 to 1023 (1024 values
because it uses 10 bits, 210)
PWM Output values range from 0 to 255 (256 values because
it uses 8 bits, 28)

Analog

SIK BINDER //18

CHAPTER 2
Analog and Digital

Name:
Date:

All of the electrical signals that the RedBoard works with
are either Analog or Digital. It is extremely important to
understand the difference between these two types of
signal and how to manipulate the information these signals
represent.

// Digital
An electronic signal transmitted as binary code that can be
either the presence or absence of current, high and low
voltages or short pulses at a particular frequency.

Humans perceive the world in analog, but robots, computers
and circuits use Digital. A digital signal is a signal that has
only two states. These states can vary depending on the
signal, but simply defined the states are ON or OFF, never
in between.

Digital signals are used for everything with the exception of
Analog Input. Depending on the voltage of the Arduino the
ON or HIGH of the Digital signal will be equal to the system
voltage, while the OFF or LOW signal will always equal 0V.
This is a fancy way of saying that on a 5V RedBoard the HIGH
signals will be a little under 5V and on a 3.3V RedBoard the
HIGH signals will be a little under 3.3V.

To receive or send Digital signals the Arduino uses Digital
pins # 0 - # 13. You may also setup your Analog In pins to
act as Digital pins. To set up Analog In pins as Digital pins
use the command:
 	 pinMode(pinNumber, value);
where pinNumber is an Analog pin (A0 – A5) and value is
either INPUT or OUTPUT. To setup Digital pins use the same
command but reference a Digital pin for pinNumber instead
of an Analog In pin. Digital pins default as input, so really
you only need to set them to OUTPUT in pinMode. To read
these pins use the command:

 	 digitalRead(pinNumber);
where pinNumber is the Digital pin to which the Digital
component is connected. The digitalRead command will
return either a HIGH or a LOW signal. To send a Digital signal
to a pin use the command:
 	 digitalWrite(pinNumber, value);
where pinNumber is the number of the pin sending the signal
and value is either HIGH or LOW.

The RedBoard also has the capability to output a Digital signal
that acts as an Analog signal, this signal is called Pulse Width
Modulation (PWM). Digital Pins # 3, # 5, # 6, # 9, # 10 and
#11 have PWM capabilities. To output a PWM signal use
the command:
	 analogWrite(pinNumber, value);
where pinNumber is a Digital Pin with PWM capabilities and
value is a number between 0 (0%) and 255 (100%). For
more information on PWM see the PWM worksheets or S.I.K.
circuit 12.

Examples of Digital:

Values: On/Off, Men’s room/Women’s room, pregnancy,
consciousness, the list goes on....
Sensors/Interfaces: Buttons, Switches, Relays,
CDs, etc....

Things to Remember about Digital:

Digital Input/Output uses the Digital pins, but Analog In pins
can be used as Digital
To receive a Digital signal use: 				
	 digitalRead(pinNumber);	
To be able to send a Digital signal use:
 digitalWrite(pinNumber, value);
Digital Input and Output are always either HIGH or LOW /
ON or OFF.

Digital

SIK BINDER //19

CHAPTER 2
Analog and Digital

Name:
Date:

All of the electrical signals that the RedBoard works with are
either input or output. It is extremely important to understand
the difference between these two types of signal and how to
manipulate the information these signals represent.

// Input Signals
A signal entering an electrical system, in this case a micro-
controller. Input to the RedBoard pins can come in one of
two forms; Analog Input or Digital Input.
	
Analog Input enters your RedBoard through the Analog In
pins # 0 - # 5. These signals originate from analog sensors
and interface devices. These analog sensors and devices use
voltage levels to communicate their information instead of
a simple yes (HIGH) or no (LOW). For this reason you cannot
use a digital pin as an input pin for these devices. Analog
Input pins are used only for receiving Analog signals. It is only
possible to read the Analog Input pins so there is no command
necessary in the setup() function to prepare these pins for
input. To read the Analog Input pins use the command:
	 analogRead(pinNumber);
where pinNumber is the Analog Input pin number. This
function will return an Analog Input reading between 0 and
1023. A reading of zero corresponds to 0 Volts and a reading
of 1023 corresponds to 5 Volts. These voltage values are
emitted by the analog sensors and interfaces. If you have an
Analog Input that could exceed Vcc + .5V you may change
the voltage that 1023 corresponds to by using the Aref pin.
This pin sets the maximum voltage parameter your Analog
Input pins can read. The Aref pin's preset value is 5V.

Digital Input can enter your RedBoard through any of the
Digital Pins # 0 - # 13. Digital Input signals are either HIGH
(On, 5V) or LOW (Off, 0V). Because the Digital pins can be

used either as input or output you will need to prepare the
RedBoard to use these pins as inputs in your setup()function.
To do this type the command:
	 pinMode(pinNumber, INPUT);
inside the curly brackets of the setup() function where
pinNumber is the Digital pin number you wish to declare as
an input. You can change the pinMode in the loop()function
if you need to switch a pin back and forth between input and
output, but it is usually set in the setup()function and left
untouched in the loop()function. To read the Digital pins set
as inputs use the command:
	 digitalRead(pinNumber);
where pinNumber is the Digital Input pin number.

Input can come from many different devices, but each
device's signal will be either Analog or Digital, it is up to
the user to figure out which kind of input is needed. Hook
up the hardware and then type the correct code to properly
use these signals.

Things to Remember about Input:

Input is either Analog or Digital, make sure to use the correct
pins depending on type.
To take an Input reading use analogRead(pinNumber); (for
analog)
Or digitalRead(pinNumber); (for digital)
Digital Input needs a pinMode command such as
pinMode(pinNumber, INPUT);
Analog Input varies from 0 to 1023
Digital Input is always either HIGH or LOW

Examples of Input:

Push Buttons, Potentiometers, Photoresistors, Flex Sensors

Input

SIK BINDER //20

CHAPTER 2
Analog and Digital

Name:
Date:

All of the electrical signals that the Arduino works with are
either input or output. It is extremely important to understand
the difference between these two types of signal and how to
manipulate the information these signals represent.

// Output Signals
A signal exiting an electrical system, in this case a micro-
controller.

Output to the RedBoard pins is always Digital, however there
are two different types of Digital Output; regular Digital Output
and Pulse Width Modulation Output (PWM). Output is only
possible with Digital pins # 0 - # 13. The Digital pins are
preset as Output pins, so unless the pin was used as an Input
in the same sketch, there is no reason to use the pinMode
command to set the pin as an Output. Should a situation
arise where it is necessary to reset a Digital pin to Output
from Input use the command:
	 pinMode(pinNumber, OUTPUT);
where pinNumber is the Digital pin number set as Output. To
send a Digital Output signal use the command:
 	 digitalWrite(pinNumber, value);
where pinNumber is the Digital pin that is outputting the
signal and value is the signal. When outputting a Digital signal
value can be either HIGH (On) or LOW (Off).

Digital Pins # 3, # 5, # 6, # 9, # 10 and #11 have PWM
capabilities. This means you can Output the Digital equivalent
of an Analog signal using these pins. To Output a PWM signal
use the command:
	 analogWrite(pinNumber, value);
where pinNumber is a Digital Pin with PWM capabilities and

value is a number between 0 (0%) and 255 (100%). For
more information on PWM see the PWM worksheets or S.I.K.
circuit 12.

Output can be sent to many different devices, but it is up to
the user to figure out which kind of Output signal is needed,
hook up the hardware and then type the correct code to
properly use these signals.

Things to remember about Output:

Output is always Digital
There are two kinds of Output: regular Digital or PWM (Pulse
Width Modulation)
To be able to send an Output signal use:
 analogWrite(pinNumber, value); (for analog) or 	
digitalWrite(pinNumber, value); (for digital)
Output pin mode is set using the pinMode command:
pinMode(pinNumber, OUTPUT);
Regular Digital Output is always either HIGH or LOW
PWM Output varies from 0 to 255

Examples of Output:

Light Emitting Diodes (LED's), Piezoelectric Speakers,
Servo Motors

Output

SIK BINDER //21

CHAPTER 2
Programming Concepts, Input/Output Activity

Purpose: Group activity teaching the concepts of input
and output as used in Arduino Programming and Physical
Computing. Text formatted like this denotes actual Arduino
code.

Materials: Three to five different sized balls and a white/
chalk board big enough so the whole room can see it.

Vocabulary to be explained prior to activity:

input: A pin mode that intakes information.
output: A pin mode that sends information.
digitalRead: Command used to get a HIGH or LOW value
from a digital input pin.
analogRead: Command used to get a value between or
including 0 and 1023 from an analog input pin.
digitalWrite: Command used to send a HIGH or LOW value
to an output pin.
analogWrite: Command used to send a PWM value to an
output pin simulating an analog output.
PWM: A value between 0 and 255 representing a digital
signal simulating an analog output. Used with analogWrite.
HIGH: Electrical signal present (5V for Uno). Also ON or True
in boolean logic.
LOW: No electrical signal present (0V). Also OFF or False in
boolean logic.

Preparation: Divide the class in quarters, assign each group
the following names: Sensors, Input Pins, Output Pins, and
Output Components. Arrange the groups in lines in this order
about ten to twenty feet apart (or farther if the students are
older). The students at the front of each line are Code, their
job is to write the Arduino code corresponding to the signal
received by their team on the chalk board or white board.
Distribute the balls so that each student in the Sensor line
has at least one of each size. The smallest balls (tennis or
bouncy balls) represent the smallest signal a sensor can send
to the RedBoard, LOW. The largest balls represent the largest
signal a sensor can send, HIGH. The ball or balls of medium
size represent PWM values depending on size.

Activity: To start the activity ask the Code student in the
Sensor line to tell the class what kind of sensors the Sensor
line represents (photoresistor, potentiometer, flex sensor,
etc...) and write on the board what the sensor value is. The
sensor value corresponds to the sensor type. For example,
if the sensor type is photoresistor then “sunny day” might
be written to signal a HIGH signal or “really cloudy” might
be written to signal a smaller PWM value.

Each student in the Sensor line then throws the corresponding
sized ball to a student in the Input Pin line. Once all the Input
Pins have caught their “signals” the Code student in the Input
Pin line writes the analogRead or digitalRead value they think
corresponds to the signal.

Once the analogRead value has been written on the board
the Input Pin line throws the balls to the Output Pin line. The
Code student in that line writes the analogWrite or digitalWrite
value they think corresponds to the signal on the board and
the balls are thrown to the Output Components.

Once all the Output Components catch their balls the Code
student tells the class what type of output component
the Output Component line represents and the Output
Components strike a pose depending on the signal they
received. In the example below poses for LEDs and Servos
are shown, but students should be encouraged to make up
their own output poses or actions. For example, to represent
a HIGH value with motor component outputs students might
run in place as fast as they can.

Once the Output Component line has finished, the balls
are thrown back to the Sensor line, the Code students are
replaced by another student in their line and the process
starts over. Once every student has had a chance to be the
Code student the lines should switch so eventually everyone
has a chance to play each part of the input/output process.

This version of the input/output activity is the simplest form of
the activity. If students are comfortable with this version and
want more of a challenge there are many ways to complicate
the activity.

Give the Output line a set of balls as well as the Sensor line
and place a piece of code between the Input and Output lines.
The code should be a map command switching the Output
signal. For example use:
 	 map(signal, 0, 1023, 255, 0);
so that the Output line must throw a large ball (HIGH signal)
when the Input line receives a small ball (LOW signal). You
can then switch this code through out the game.

Get rid of the Code students and have the Sensor line choose
which ball they will throw. Each student can yell out what
their line's value equals depending on the size of the ball
they catch. This version is a little more fun but will also be
a little more chaotic.

SIK BINDER //22

Once all the Output Components catch their balls the Code
student tells the class what type of output component
the Output Component line represents and the Output
Components strike a pose depending on the signal they
received. In the example below poses for LEDs and Servos
are shown, but students should be encouraged to make up
their own output poses or actions. For example, to represent
a HIGH value with motor component outputs students might
run in place as fast as they can.

Once the Output Component line has finished, the balls
are thrown back to the Sensor line, the Code students are
replaced by another student in their line and the process
starts over. Once every student has had a chance to be the
Code student the lines should switch so eventually everyone
has a chance to play each part of the input/output process.

This version of the input/output activity is the simplest form of
the activity. If students are comfortable with this version and
want more of a challenge there are many ways to complicate
the activity.

Give the Output line a set of balls as well as the Sensor line
and place a piece of code between the Input and Output lines.
The code should be a map command switching the Output
signal. For example use:

map(signal, 0, 1023, 255, 0);
so that the Output line must throw a large ball (HIGH signal)
when the Input line receives a small ball (LOW signal). You
can then switch this code through out the game.

Get rid of the Code students and have the Sensor line choose
which ball they will throw. Each student can yell out what
their line's value equals depending on the size of the ball
they catch. This version is a little more fun but will also be
a little more chaotic.

CHAPTER 2
Programming Concepts, Input/Output Activity

Activity
}

Code

Sensors Input Pins Output Pins Output Components

SMALL

MEDIUM-SMALL

MEDIUM

MEDIUM-LARGE

LARGE

// LOW

// HIGH

// PWM VALUE 1

// PWM VALUE 2

// PWM VALUE 3

Additional thoughts: This is a great activity just prior to
computer lab time. Instead of having kids bouncing off the
monitors they will be calmer and ready to sit still applying the

concepts they just solidified through physical activity. This is
great for kinesthetic learners in particular.

SIK BINDER //23

For the most part in computer language one
means ON and zero means OFF. This keeps things
nice and simple, but what if you want to turn
something halfway ON so that it is not all the
way ON and not all the way OFF? You can't just
use a decimal because digital technology only
understands ones and zeros. For this reason some
of the pins on your Arduino are labeled PWM or
Pulse Width Modulation pins. This means you can
send a bunch of ones and zeros real quick and the
Arduino board will read these ones and zeros as an
average somewhere between one and zero. The
red line in the diagrams represent the average.
See tables to the right.

Luckily a lot of the work has been done for
you so you don't have to figure out the actual
patterns of ones and zeros. All you have to do is
pick a number between 0 and 255 and type the
command analogWrite. The number zero means
the pin is set fully off, the number 255 means the
pin is set fully on, and all other numbers set the
pin to values between ON (100% or 255) and OFF
(0% or 0). You can use PWM on any pin labeled
PWM and do not need to set the pin mode before
sending an analogWrite command.

How do you think a PWM signal will affect each of these
components compared to a 1 or a 0?

LED:

Motor:

Piezo:

CHAPTER 2
PWM

Name:
Date:

Draw a line through these two charts to show where you believe the PWM
value should be.

There are many concepts outside of electrical engineering that are similar
to Pulse Width Modulation. Can you list at least three and explain what is
being modulated?

PWM signal at 25% PWM signal at 50%

PWM signal rising from 25% - 75%PWM signal at 75%

SIK BINDER //24

Below are five different PWM windows. A PWM signal is simply a bunch of PWM windows one after another.
Some are missing labels and some are missing diagrams. Please fill in the blanks on the middle three.

Below are three different metaphors for a PWM window and a PWM signal. Write the physical item that
represents the window and the item or items that represents the signal. Then estimate the PWM percent.

GG G

High (ON)
Low (OFF)

PWM percent 0%
(No wave)

PWM percentage PWM percent 50%
(Draw in window)

PWM percent 75%
(Draw in window)

PWM percent 100%
(No wave)

Window:

Signal percentage: Signal percentage: Signal percentage:

Window: Window:

CHAPTER 2
PWM

Name:
Date:

Computers and microprocessors only understand two things,
ON and OFF. These are represented in a few different ways.
There is ON and OFF, One and Zero, or HIGH and LOW. Ones
and Zeros are used in the computer language Binary, HIGH
and LOW are used with electricity, ON and OFF are plain old
human speak.

But what if we want to turn something digital less
than 100% ON? Then we use something called PWM,
or Pulse Width Modulation. The way your Arduino
microprocessor does this is by turning the electricity on
a PWM pin ON and then OFF very quickly. The longer the
electricity is ON the closer the PWM value is to 100%. This is
very useful for controlling a bunch of stuff. For example: the
brightness of a light bulb, volume of sound, or the speed of a
motor. These are very basic examples, what else might
you need to control that is not only ON or OFF? Explain
at least two examples.

A microprocessor creates a PWM signal by using a built in
clock. The microprocessor measures a certain amount of time
(also called a window or a period) and turns the PWM pin ON
(or HIGH) for the first part of this window and then OFF (or
LOW) near the end of the window. The window is filled up
with a different length ON (or HIGH) signal depending on the
PWM value. If the PWM value is 50% then the PWM signal
is ON (or HIGH) for half of the window. If the PWM value is
25% then the PWM signal is ON (or HIGH) for a quarter of
the window. The only time the window will not have a LOW
value is if the PWM signal is turned completely ON the whole
time and therefore equal to 100% ON. The opposite is true
as well, if the PWM signal is set to 0% or OFF, then there
will not be any HIGH value at the beginning of the window.
Explain in your own words what a PWM window is.

SIK BINDER //25

D
TR

TX-0

RX-I

5VG
N

D

G
N

D

3.3V

5V

RESET

GND

GND

VIN

A1

A2

A0

A3

A4

A5

PO
W

ER

RESET

AREF
GND

13

12

11

10

9

8

6

5

7

4

3

2

1

0

D
IG

ITA
L (PW

M
)

A
N

A
LO

G
 IN O

N

a b c d e f g h i
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

a b c d e f g h i

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Code:

int ledPin = 13;

 void setup() {
 pinMode(ledPin, OUTPUT);
}

 void loop() {
 digitalWrite(ledPin, HIGH); //LED on
 delay(1000); // wait second
 digitalWrite(ledPin, LOW); //LED off
 delay(1000); // wait second
}

or for PWM the output loop could read :

int ledPin = 11;

void setup() {
 pinMode(ledPin, OUTPUT);
}

 void loop() {
 analogWrite(ledPin, 255); // LED on
 delay(1000); // wait second
 analogWrite(ledPin, 0); // LED off
 delay(1000); // wait second
}

Explanation:

This circuit takes electricity from digital Pin # 9 on the
RedBoard. Pin # 9 on the RedBoard has Pulse Width
Modulation capability allowing the user to change the
brightness of the LED when using analogWrite. The LED is
connected to the circuit so electricity enters through the
anode (+, or longer wire) and exits through the cathode (-,
or shorter wire). The resistor dissipates current so the LED
does not draw current above the maximum rating and burn
out. Finally the electricity reaches ground, closing the circuit
and allowing electricity to flow from power source to ground.

Components:

Arduino Digital Pin # 9: Power source, PWM (if code uses
analogWrite) or digital (if code uses digitalWrite) output from
Arduino board.

LED: As in other diodes, current flows easily from the + side,
or anode (longer wire), to the - side, or cathode (shorter wire),
but not in the reverse direction. Also lights up!

330 Ohm Resistor: A resistor resists the current flowing
through the circuit. In this circuit the resistor reduces the
current so the LED does not burn out.

Gnd: Ground

CHAPTER 2
How the Circuits Work

Name:
Date:

Circuit #1: Blinking an LED

SIK BINDER //26

Explanation:

This circuit is actually two different circuits. One circuit for
the potentiometer and another for the LED. See ‘How the
Circuits Work’ Circuit 1 for an explanation of the LED circuit.
The potentiometer circuit gets electricity from the 5V on the
Arduino. The electricity passes through the potentiometer
and sends a signal to Analog Pin # 0 on the Arduino. The
value of this signal changes depending on the setting of
the dial on the potentiometer. This analog reading is then
used in the code you load onto the Arduino and effects
the power signal in the LED circuit. Finally the electricity
reaches ground, closing the circuit and allowing electricity
to flow from power source to ground.

Components:

Arduino Digital Pin # 13: Power source, PWM (if code uses
analogWrite) or digital (if code uses digitalWrite) output from
Arduino board.

Arduino Analog Pin # 0: Analog input to Arduino board.

330 Ohm Resistor: A resistor resists the current flowing
through the circuit. In the LED circuit it reduces the current
so the LED in the circuit does not burn out.

LED: As in other diodes, current flows easily from the + side,
or anode (longer wire), to the - side, or cathode (shorter wire),
but not in the reverse direction.

Potentiometer: A voltage divider which outputs an analog
value.

+5V: Five Volt power source.

Gnd: Ground

Code:

int sensorPin = 0;
int ledPin = 13;
int sensorValue = 0;

void setup() {
 pinMode(ledPin, OUTPUT);
}

void loop() {

//this line assigns whatever the analog Pin 0 reads to
sensorValue

 sensorValue = analogRead(sensorPin);

 digitalWrite(ledPin, HIGH);
 delay(sensorValue);
 digitalWrite(ledPin, LOW);
 delay(sensorValue);
}

D
TR

TX-0

RX-I

5VG
N

D

G
N

D

3.3V

5V

RESET

GND

GND

VIN

A1

A2

A0

A3

A4

A5

PO
W

ER

RESET

AREF
GND

13

12

11

10

9

8

6

5

7

4

3

2

1

0
D

IG
ITAL (PW

M
)

AN
ALO

G
 IN O

N

a b c d e f g h i
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

a b c d e f g h i

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Additional thoughts: This is another example of input, only this time it is Analog. Circuits 2 and 5 in the S.I.K. introduces
you to the two kinds of input your board can receive: Digital and Analog. Not sure what a voltage divider is? Check out the
Voltage Divider page towards the back of this section.

CHAPTER 2
How the Circuits Work

Name:
Date:

Circuit #2: Potentiometer

SIK BINDER //27

Explanation:

This circuit is pretty straight forward. The Digital Arduino
Pins # 9, # 10 and # 11 supply a PWM value to each of
the three different LEDs within the Tri-Color LED (Red,
Green, and Blue). The LEDs are connected to the circuit so
electricity enters through the anode (+, or longer wire) and
exits through the cathode (-, or shorter wire). The resistors
dissipate current so the LEDs do not draw current above the
maximum rating and burn out. Finally the electricity reaches
ground, closing the circuit and allowing electricity to flow
from power source to ground. By supplying different values
to just these three Digital Pins you can mix 16,777,216
different colors!

Components:

Arduino Digital Pin # 9, # 10 and # 11: Power source, PWM
output from Arduino board.

RGB LED: Unlike single color LEDs, on RGB (Also called ‘Tri-
Color’) LEDs, the cathode (or ground wire) is the longest wire
and each color (Red, Green, and Blue) gets its own lead. (See
the schematic for details).

330 Ohm Resistor: A resistor resists the current flowing
through the circuit. In this circuit the resistor reduces the
current so the LEDs do not burn out.

Gnd: Ground

Code:

const int RED_LED_PIN = 9;
const int GREEN_LED_PIN = 10;
const int BLUE_LED_PIN = 11;
int redIntensity = 0;
int greenIntensity = 0;
int blueIntensity = 0;
const int DISPLAY_TIME = 100;

void setup() {
// No setup required but you still need it
}

void loop(){
 for (greenIntensity = 0; greenIntensity <= 255;
greenIntensity+=5) {
 redIntensity = 255-greenIntensity;
 analogWrite(GREEN_LED_PIN, greenIntensity);

 analogWrite(RED_LED_PIN, redIntensity);
 delay(DISPLAY_TIME);
 }
 for (blueIntensity = 0; blueIntensity <= 255;
blueIntensity+=5) {
 greenIntensity = 255-blueIntensity;
 analogWrite(BLUE_LED_PIN, blueIntensity);
 analogWrite(GREEN_LED_PIN, greenIntensity);
 delay(DISPLAY_TIME);
 }
 for (redIntensity = 0; redIntensity <= 255; redIntensity+=5)
{
 blueIntensity = 255-redIntensity;
 analogWrite(RED_LED_PIN, redIntensity);
 analogWrite(BLUE_LED_PIN, blueIntensity);
 delay(DISPLAY_TIME);
 }
}

D
TR

TX-0

RX-I

5VG
N

D

G
N

D

3.3V

5V

RESET

GND

GND

VIN

A1

A2

A0

A3

A4

A5

PO
W

ER

RESET

AREF
GND

13

12

11

10

9

8

6

5

7

4

3

2

1

0

D
IG

ITA
L (PW

M
)

A
N

A
LO

G
 IN O

N

a b c d e f g h i
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

a b c d e f g h i

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Additional thoughts: See how combining just three simple outputs can create some amazing results?

CHAPTER 2
How the Circuits Work

Name:
Date:

Circuit #3: RGB LEDs

SIK BINDER //28

D
TR

TX-0

RX-I

5VG
N

D

G
N

D

3.3V

5V

RESET

GND

GND

VIN

A1

A2

A0

A3

A4

A5

PO
W

ER

RESET

AREF
GND

13

12

11

10

9

8

6

5

7

4

3

2

1

0
D

IG
ITA

L (PW
M

)

A
N

A
LO

G
 IN O

N

a b c d e f g h i
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

a b c d e f g h i

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Explanation:

This circuit takes electricity from Pin # 2 through Pin # 9
on the Arduino. The LEDs are connected to the circuit so
electricity enters through the anode (+, or longer wire) and
exits through the cathode (-, or shorter wire). The resistor
dissipates current so the LEDs do not draw current above the
maximum rating and burn out. Finally the electricity reaches
ground, closing the circuit and allowing electricity to flow
from power source to ground.

Components:

Arduino Digital Pins # 2 - # 9: Power source, analog (if code
uses analogWrite, only possible on pins 3, 5, 6, & 9) or digital
(if code uses digitalWrite) output from Arduino board.

LEDs: As in other diodes, current flows easily from the + side,
or anode (longer wire), to the - side, or cathode (shorter wire),
but not in the reverse direction. Also lights up!

330 Ohm Resistor: The resistors resist the current flowing
through the circuit. In this circuit the resistors reduce the
current so the LEDs do not burn out.

Gnd: Ground

Code:

//this line below declares an array
int ledPins[] = {2,3,4,5,6,7,8,9};

void setup() {

//these two lines set Digital Pins # 0 – 8 to output
for(int i = 0; i < 8; i++){
pinMode(ledPins[i],OUTPUT);

}

void loop() {

//these lines turn the LEDs on and then off
for(int i = 0; i <= 7; i++){
 digitalWrite(ledPins[i], HIGH);
 delay(delayTime);
 digitalWrite(ledPins[i], LOW);
 }
}

Additional thoughts: The code examples in the S.I.K get a little complicated for the fourth circuit, but don’t worry, it’s just
more outputs. Some of the code examples use “for” loops to do something a number of times, if you’re not familiar with
“for” see Loops in Programming Concepts.

CHAPTER 2
How the Circuits Work

Name:
Date:

Circuit #4: Multiple LEDs

SIK BINDER //29

Explanation:

This circuit is actually two different circuits. One circuit for
the buttons and another for the LED. See ‘How the Circuits
Work’ Circuit 1 for an explanation of the LED circuit. The
button circuit gets electricity from the 5V on the Arduino.
The electricity passes through a pull up resistor, causing
the input on Arduino Pins # 2 and # 3 to read HIGH when the
buttons are not being pushed. When a button is pushed it
allows the current to flow to ground, causing a LOW reading
on the input pin connected to it. This LOW reading is then
used in the code you load onto the Arduino and effects the
power signal in the LED circuit.

Components:

Arduino Digital Pin # 13: Power source, PWM (if code uses
analogWrite) or digital (if code uses digitalWrite) output from
Arduino board.

Code:

const int buttonPin = 2;
const int ledPin = 13;

int buttonState = 0;

void setup() {
 pinMode(ledPin, OUTPUT);
 //this line below declares the button pin as input
 pinMode(buttonPin, INPUT);
}

void loop(){
 //this line assigns whatever the Digital Pin 2 reads to 	
 //buttonState
 buttonState = digitalRead(buttonPin);

 if (buttonState == HIGH) {
 digitalWrite(ledPin, HIGH);
 }
 else {
 digitalWrite(ledPin, LOW);
 }
}

DTR

TX-0

RX-I

5VG
N

D

G
N

D

3.3V

5V

RESET

GND

GND

VIN

A1

A2

A0

A3

A4

A5

PO
W

ER

RESET

AREF
GND

13

12

11

10

9

8

6

5

7

4

3

2

1

0

D
IG

ITAL (PW
M

)

AN
ALO

G
 IN O

N

a b c d e f g h i
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

a b c d e f g h i

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Additional thoughts: This circuit is the first circuit to use the input capabilities of the Arduino. Notice the difference in
setup(). You are still using a Digital Pin but you are using it as input rather than output. Buttons are sweet by the way, let
the kids press these buttons instead of yours.

Arduino Digital Pin # 2 and # 3: Digital input to Arduino board.

330 & 10K Ohm Resistors: Resistors resist the current flowing
through the circuit. In the LED circuit the 330 ohm resistor
reduces the current so the LED in the circuit does not burn
out. In the button circuits the 10Ks ensure that the buttons
will read HIGH when they are not pressed.

LED: As in other diodes, current flows easily from the + side,
or anode (longer wire), to the - side, or cathode (shorter wire),
but not in the reverse direction. Lights up!

Button: A press button which is open (or disconnected) when
not in use and closed (or connected) when pressed. This
allows you to complete a circuit when you press a button.

+5V: Five volt power source.

Gnd: Ground

CHAPTER 2
How the Circuits Work
Circuit #5: Push Buttons

SIK BINDER //30

D
TR

TX-0

RX-I

5VG
N

D

G
N

D

3.3V

5V

RESET

GND

GND

VIN

A1

A2

A0

A3

A4

A5

PO
W

ER

RESET

AREF
GND

13

12

11

10

9

8

6

5

7

4

3

2

1

0
D

IG
ITAL (PW

M
)

AN
ALO

G
 IN O

N

a b c d e f g h i
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

a b c d e f g h i

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Explanation:

This circuit is actually two different circuits. One circuit for
the photoresistor and another for the LED. See ‘How the
Circuits Work’ Circuit 1 for an explanation of the LED circuit.
The photoresistor circuit gets electricity from the 5V on the
Arduino. The electricity passes through the photoresistor and
sends a signal to Analog Pin # 0 on the Arduino. The value
of this signal changes depending on the amount of sunlight.
This analog reading is then used in the code you load onto
the Arduino and effects the power signal in the LED circuit.
The resistor below the Analog Pin connection creates the
voltage divider necessary to measure the resistance of the
photoresistor. Finally the electricity reaches ground, closing
the circuit and allowing electricity to flow from power source
to ground.

Code:

int lightPin = 0;
int ledPin = 13;

void setup() {
 pinMode(ledPin, OUTPUT);
}

void loop() {
 int lightLevel = analogRead(lightPin);
 lightLevel = map(lightLevel, 0, 900, 0, 255);
 lightLevel = constrain(lightLevel, 0, 255);
 analogWrite(ledPin, lightLevel);
}

Additional thoughts: This circuit is another example of Analog input. It is also a perfect example of a voltage divider. Don’t
worry about the “map” and “constrain” functions they are explained in the glossary. Unsure about the voltage divider? See
the voltage divider page towards the back of this section.

Components:

Arduino Digital Pin # 13: Power source, PWM (if code uses
analogWrite) or digital (if code uses digitalWrite) output from
Arduino board.

Arduino Analog Pin # 0: Analog input to Arduino board.

330 Ohm Resistor: A resistor resists the current flowing
through the circuit. In the LED circuit it reduces the current so
the LED in the circuit does not burn out. In the photoresistor
circuit the resistor completes the voltage divider.

LED: As in other diodes, current flows easily from the + side,
or anode (longer wire), to the - side, or cathode (shorter wire),
but not in the reverse direction. Lights up!

Photoresistor: A resistor with a resistance value that changes
depending on the amount of light hitting the sensor.

+5V: Five Volt power source.

Gnd: Ground

CHAPTER 2
How the Circuits Work
Circuit #6: Photo Resistor

SIK BINDER //31

Explanation:

This circuit takes electricity from the 5V on the Arduino. The
temperature sensor sends an analog value to Arduino Analog
Pin # 0. Then the electricity reaches ground, closing the circuit
and allowing electricity to flow from power source through
the sensor to ground. Finally Arduino uses its Serial monitor
to display the temperature reading.

Components:

Arduino Analog Pin # 0: Analog input to Arduino board.

Temperature Sensor: Provides a voltage value depending on
the temperature. Some math is then required to convert this
value to Celsius or Fahrenheit.

+5V: Five Volt power source.

Gnd: Ground

Code:

int temperaturePin = 0;

void setup() {

//Serial comm. at a Baud Rate of 9600
 Serial.begin(9600);
}

void loop() {

//Calls the function to read the sensor pin
 float temp = getVoltage(temperaturePin);

//Below is a line that compensates for an offset
//(see datasheet)
 temp = (temp - .5) * 100;

 //This line displays the variable temperature after all
 //the math
 Serial.println(temp);
 delay(1000);
}

//function that reads the Arduino pin and starts to convert
//it to degrees

float getVoltage(int pin) {
 return (analogRead(pin) * .004882814);
}

D
TR

TX-0

RX-I

5VG
N

D

G
N

D

3.3V

5V

RESET

GND

GND

VIN

A1

A2

A0

A3

A4

A5

PO
W

ER

RESET

AREF
GND

13

12

11

10

9

8

6

5

7

4

3

2

1

0

D
IG

ITAL (PW
M

)

AN
ALO

G
 IN O

N

a b c d e f g h i
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

a b c d e f g h i

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Additional thoughts: There is a lot of math involved in the code section of this circuit and it all has a reason. But how
would you know you need to offset the temperature reading by .5 unless you had read the Datasheet? Also, pay attention
to the code lines that enable Serial communication.

CHAPTER 2
How the Circuits Work

Name:
Date:

Circuit #7: Temperature Sensor

SIK BINDER //32

Explanation:

The servo in this circuit takes electricity from 5V on the
Arduino. Pin # 9 on the Arduino supplies a PWM signal which
sets the position of the servo. Each voltage value has a distinct
correlating position. Finally the electricity reaches ground,
closing the circuit and allowing electricity to flow from power
source to ground.

Components:

Arduino Digital Pin #9: Signal power source for servo.

Servo: Sets the position of the servo arm depending on the
voltage of the signal received.

+5V: Five volt power source.

Gnd: Ground

Code:

//include the servo library for use
#include <Servo.h>
Servo myservo; //create servo object

int pos = 0;

void setup() {
 myservo.attach(9);
}
void loop() {

//moves servo from 0° to 180°
 for(pos = 0; pos < 180; pos += 1) {
 myservo.write(pos);
 delay(15);
 }
 // moves servo from 180° to 0°
 for(pos = 180; pos>=1; pos-=1) {
 myservo.write(pos);
 delay(15);
 }
}

D
TR

TX-0

R
X-I

5VG
N

D

G
N

D

3.3V

5V

RESET

GND

GND

VIN

A1

A2

A0

A3

A4

A5

P
O

W
ER

R
ESET

AREF
GND

13

12

11

10

9

8

6

5

7

4

3

2

1

0

D
IG

ITA
L (P

W
M

)

A
N

A
LO

G
 IN O

N

a b c d e f g h i
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

a b c d e f g h i

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Additional thoughts: To some kids this is exciting stuff. There are all kinds of things kids can think to do with servos,
you’ve just got to ask them. Throw out the word “robot” and see what comes back at you. Remember, this is just slightly
more complicated output, same as the motor and LED.

CHAPTER 2
How the Circuits Work

Name:
Date:

Circuit #8: A Single Servo

SIK BINDER //33

Explanation:

This circuit is actually two different circuits. One circuit for the
flex sensor and another for the servo. See ‘How the Circuits
Work’ Circuit 8 for an explanation of the servo circuit. The
flex sensor circuit gets electricity from the 5V on the Arduino.
The electricity passes through the flex sensor and sends a
signal to Analog Pin # 0 on the Arduino. The value of this
signal changes depending on the amount of bend in the flex
sensor. This analog reading is then used in the code you
load onto the Arduino and sets the position of the servo.
The resistor and flex sensor create a voltage divider which
is measured by Analog Pin # 0. Finally the electricity reaches
ground, closing the circuit and allowing electricity to flow
from power source to ground.

Code:

#include <Servo.h> //include the servo library
Servo myservo;

int potpin = 0; //sets pin 0 to read the flex sensor
int val;

void setup() {
 Serial.begin(9600);

 myservo.attach(9);
}

void loop() {
 val = analogRead(potpin); //get a reading from the flex sensor
 Serial.println(val);
 val = map(val, 50, 300, 0, 179);
 myservo.write(val);
 delay(15);
}

D
TR

TX-0

RX-I

5VG
N

D

G
N

D

3.3V

5V

RESET

GND

GND

VIN

A1

A2

A0

A3

A4

A5

PO
W

ER

RESET

AREF
GND

13

12

11

10

9

8

6

5

7

4

3

2

1

0

D
IG

ITA
L (PW

M
)

A
N

A
LO

G
 IN O

N

a b c d e f g h i
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

a b c d e f g h i

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Additional thoughts: This analog input is definitely very different from any other input we have looked at so far but the
concept is the same. We treat the sensor as a resistor in a voltage divider to get a reading and then change our output
depending on that reading.

Components:

Arduino Digital Pin # 9: Power source, PWM output from
Arduino board.

Arduino Analog Pin # 0: Analog input to Arduino board.

10K Ohm Resistor: A resistor resists the current flowing
through the circuit.

Flex Sensor: A resistor with a value that varies depending
on the amount of bend in the sensor.

Servo: Sets the position of the servo arm depending on the
voltage of the signal received.

+5V: Five Volt power source.

Gnd: Ground

CHAPTER 2
How the Circuits Work
Circuit #9: Flex Sensor

SIK BINDER //34

Explanation:

This circuit is actually two different circuits. One circuit for
the soft pot and another for the RGB LED. See ‘How the
Circuits Work’ Circuit 3 for an explanation of the RGB LED
circuit. The soft pot circuit gets electricity from the 5V on the
Arduino. The electricity passes through the soft pot and sends
a signal out the com line of the soft pot to Analog Pin # 0 on
the Arduino. The value of this signal changes depending on
where the wiper (any type of contact) touches the soft pot.
This analog reading is then used in the code you load onto
the Arduino and sets the color of the RGB LED. Notice that yet
again our sensor and the input pin form a voltage divider, only
this time the voltage divider is completely inside the sensor.
The wiper divides the resistor into two different portions with
values that depend on the position of the wiper. Finally the
electricity reaches ground, closing the circuit and allowing
electricity to flow from power source to ground.

Components:

Arduino Digital Pins # 9, 10, 11: Power source, PWM output
from Arduino board.

Arduino Analog Pin # 0: Analog input to Arduino board.

330 Ohm Resistor: A resistor resists the current flowing
through the circuit. In the RGB LED circuit it reduces the
current so the LED it is attached to does not burn out.

Flex Sensor: A resistor with a value that varies depending
on the amount of bend in the sensor.

RGB LED: A grouping of three LEDs, Red, Green and Blue.
Power goes in three different anodes (+, the short wires)
and out one common cathode (-, the long wire). Lights up!

+5V: Five Volt power source.

Gnd: Ground

Code:

const int RED_LED_PIN = 9;
const int GREEN_LED_PIN = 10;
const int BLUE_LED_PIN = 11;

void setup() {
//No setup necessary but you still need it
}

void loop() {
 int sensorValue = analogRead(0);

 int redValue = constrain(map(sensorValue, 0, 512, 255,
0),0,255);
 int greenValue = constrain(map(sensorValue, 0, 512, 0,
255),0,255)-constrain(map(sensorValue, 512, 1023, 0,
255),0,255);
 int blueValue = constrain(map(sensorValue, 512, 1023,
0, 255),0,255);

 analogWrite(RED_LED_PIN, redValue);
 analogWrite(GREEN_LED_PIN, greenValue);
 analogWrite(BLUE_LED_PIN, blueValue);
}

D
TR

TX-0

RX-I

5VG
N

D

G
N

D

3.3V

5V

RESET

GND

GND

VIN

A1

A2

A0

A3

A4

A5

PO
W

ER

RESET

AREF
GND

13

12

11

10

9

8

6

5

7

4

3

2

1

0
D

IG
ITA

L (PW
M

)

A
N

A
LO

G
 IN O

N

a b c d e f g h i
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

a b c d e f g h i

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Additional thoughts: This analog sensor is similar to the flex sensor. You will often see the basic concepts covered in the
S.I.K. in different forms as you work with more complicated sensors and outputs. Most of these technologies are built using
the same building blocks and some math.

CHAPTER 2
How the Circuits Work

Name:
Date:

Circuit #10: Soft Potentiometer

SIK BINDER //35

D
TR

TX-0

R
X-I

5VG
N

D

G
N

D

3.3V

5V

RESET

GND

GND

VIN

A1

A2

A0

A3

A4

A5

PO
W

ER

R
ESET

AREF
GND

13

12

11

10

9

8

6

5

7

4

3

2

1

0

D
IG

ITA
L (PW

M
)

A
N

A
LO

G
 IN O

N

a b c d e f g h i
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

a b c d e f g h i

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Explanation:

This circuit gets electricity from Arduino Pin # 9. The Piezo
element plays different musical notes depending on the speed
and duration of the electrical signal sent from Pin # 9. Finally
the electricity reaches ground, closing the circuit and allowing
electricity to flow from power source to ground.

Components:

Arduino Digital Pin # 9: Power source, digital output from
Arduino board. (If changed to PWM output this creates
distortion of note, not a change in volume.)

Piezo element: A tiny speaker with a magnetic coil that
responds to electrical current by moving more or less
depending on the current. The coil is attached to a diaphragm
that moves air and causes the noise we hear.

Gnd: Ground

Note:

This section contains only the two functions needed to make
the piezo play a note of a given duration. These functions are
called in the loop () function.

Code:

void playTone(int tone, int duration) {
 for (long i = 0; i < duration * 1000L; i += tone * 2) {
 digitalWrite(speakerPin, HIGH);
 delayMicroseconds(tone);
 digitalWrite(speakerPin, LOW);

delayMicroseconds(tone);
 }
}
void playNote(char note, int duration) {
 char names[] = { ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘a’, ‘b’, ‘C’ };
 int tones[] = { 1915, 1700, 1519, 1432, 1275, 1136,
1014, 956 };

 for (int i = 0; i < 8; i++) {
 if (names[i] == note) {
 playTone(tones[i], duration);
 }
 }
}

Additional thoughts: This code is fairly complicated. Don’t worry if you don’t understand some aspects of it. If you do
understand it, congratulations! You are already ahead of this packet in regards to Arduino code. Just remember, this is
another way to use digital pins to create analog output.

CHAPTER 2
How the Circuits Work

Name:
Date:

Circuit #11: Piezo Elements

SIK BINDER //36

D
TR

TX-0

RX-I

5VG
N

D

G
N

D

3.3V

5V

RESET

GND

GND

VIN

A1

A2

A0

A3

A4

A5

PO
W

ER

RESET

AREF
GND

13

12

11

10

9

8

6

5

7

4

3

2

1

0

D
IG

ITA
L (PW

M
)

A
N

A
LO

G
 IN O

N

a b c d e f g h i
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

a b c d e f g h i

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Explanation:

The motor in this circuit takes electricity from 5V on the
Arduino. The transistor takes electricity from Pin # 9 on the
Arduino. The resistor before the transistor limits the voltage
so the PWM output from the Arduino affects the motor rate
properly. The higher the voltage supplied to the base of the
transistor, the more electricity is allowed through the motor
circuit to ground. If the transistor base is LOW no electricity
is allowed through to ground and the motor will not run. Pin
9 on the Arduino has PWM capability so it is possible to run
the motor at any percentage. The flyback diode connected
close to the motor is simply to protect the motor in the rare
case that electricity flows from the transistor towards the
motor. This only happens if the transistor is shut off suddenly.
Finally, after turning the motor and traveling through the
forward biased transistor, the electricity reaches ground,
closing the circuit and allowing electricity to flow from power
source to ground.

Components:

Arduino Digital Pin # 9: Signal power source, PWM output
from Arduino board.

Motor: Electric motor, + and – connections, converts electricity to
mechanical energy.

Transistor: A semiconductor which can be used as an
amplifier or a switch. In this case the amount of electricity
supplied to the base corresponds to the amount of electricity
allowed through from the collector to the emitter.

Flyback Diode: As in other diodes, current flows easily from
the + side, or anode (longer wire), to the - side, or cathode
(shorter wire), but not in the reverse direction.

10K Ohm Resistor: A resistor resists the current flowing
through the circuit. In this circuit the resistor acts as a ‘pull-
down’ resistor to ground.

+5V: Five Volt power source.

Gnd: Ground

Code:

int motorPin = 9;

void setup() {
 pinMode(motorPin, OUTPUT);
}

void loop() {
 for (int i = 0; i < 256; i++){
 analogWrite(motorPin, i);
 delay(50);
 }
}

Additional thoughts: If you are not familiar with electronics that’s a lot of information. This circuit is great because it
teaches about transistors, one of the basic electronic building blocks.

CHAPTER 2
How the Circuits Work

Name:
Date:

Circuit #12: Spinning a Motor

SIK BINDER //37

D
TR

TX-0
RX-I
5VG

N
D

G
N

D

3.3V
5V

RESET

GND
GND
VIN

A1
A2

A0

A3
A4
A5

PO
W

ER

RESET

AREF
GND

13
12
11
10

9
8

6
5

7

4
3
2
1
0

D
IG

ITAL (PW
M

)

AN
ALO

G
 IN O

N

a b c d e f g h i
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

a b c d e f g h i

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Explanation:

The relay circuit gets electricity from the 5V on the
Arduino. The electricity always passes through the relay
communication line which is switched to either NO (Normally
Open) or NC (Normally Closed), lighting up one of the two
LEDs. The transistor gets electricity from Arduino Digital
Pin # 2 with a resistor to prevent burn out. In this case the
transistor receives a digital signal. The transistor closes the
circuit when it is sent a HIGH value, allowing electricity to
flow through the relay coil, into the collector, out the emitter
and to ground, completing the circuit. The energized coil
sets the relay switch to NO. The transistor opens or breaks
the circuit when it is sent a LOW value, so no electricity
passes through the coil and the relay switch is set to NC.
The flyback diode connected close to the motor is simply to
protect the motor in the rare case that electricity flows from
the transistor towards the motor. This only happens if the
transistor is shut off suddenly.

Code:

int ledPin = 2;

void setup() {
 pinMode(ledPin, OUTPUT);
}

void loop() {

 //set the transistor on
 digitalWrite(ledPin, HIGH);
 // wait for a second
 delay(1000);
 // set the transistor off
 digitalWrite(ledPin, LOW);
 // wait for a second
 delay(1000);
}

Additional thoughts: By now you should be thinking that transistors seem pretty important in the world of electrical circuits.
They can be used as switches or amplifiers and they are often called the most important invention of the 20th century. The
relay is also a great control component, but it needs something to activate it, hence the transistor.

Components:

Arduino Digital Pin # 2: Power source, digital output from
Arduino board.

Relay: The relay acts as an electrically operated switch
between the two LED’s.

Transistor: A semiconductor which can be used as an
amplifier or a switch. In this case the amount of electricity
supplied to the base corresponds to the amount of electricity
allowed through from the collector to the emitter.

330 Ohm & 10K Resistors: A resistor resists the current
flowing through the circuit. In the transistor circuit it reduces
the current so the transistor in the circuit does not burn out.

Flyback Diode: As in other diodes, current flows easily from
the + side, or anode, to the - side, or cathode, but not in
the reverse direction. In this case the diode is being used
to prevent current from ‘flying back’ to the relay in case the
transistor is suddenly turned off.

CHAPTER 2
How the Circuits Work
Circuit #13: Relays

SIK BINDER //38

D
TR

TX-0

RX-I

5VG
N

D

G
N

D

3.3V

5V

RESET

GND

GND

VIN

A1

A2

A0

A3

A4

A5

PO
W

ER

RESET

AREF
GND

13

12

11

10

9

8

6

5

7

4

3

2

1

0

D
IG

ITA
L (PW

M
)

A
N

A
LO

G
 IN O

N

a b c d e f g h i
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

a b c d e f g h i

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Explanation:

The shift register in this circuit takes electricity from 5V on
the Arduino. Pin # 2, # 3 and # 4 on the Arduino supply a
digital value. The latch and clock pins are used to allow data
into the shift register. The shift register sets the eight output
pins to either HIGH or LOW depending on the values sent
to it via the data pin. The LEDs are connected to the circuit
so electricity enters through the anode (+, or longer wire)
and exits through the cathode (-, or shorter wire) if the shift
register pin is HIGH. The resistor dissipates current so the
LEDs do not draw current above the maximum rating and burn
out. Finally the electricity reaches ground, closing the circuit
and allowing electricity to flow from power source to ground.

Components:

Arduino Digital Pin # 2, # 3 and # 4: Signal power source for
data, clock and latch pins on shift register.

Shift register: Allows usage of eight output pins with three
input pins, a power and a ground.
Link: http://www.sparkfun.com/datasheets/Components/General/sn74hc165.pdf

LED: As in other diodes, current flows easily from the + side,
or anode (longer wire), to the - side, or cathode (shorter wire),
but not in the reverse direction. Lights up!

330 Ohm Resistor: A resistor resists the current flowing
through the circuit. In this circuit the resistor reduces the
current so the LED does not burn out.

+5V: Five volt power source.

Gnd: Ground

Code:

int data = 2;
int clock = 3;
int latch = 4;

int ledState = 0;
const int ON = HIGH;
const int OFF = LOW;

void setup() {
 pinMode(data, OUTPUT);
 pinMode(clock, OUTPUT);
 pinMode(latch, OUTPUT);

}

void loop(){
 for(int i = 0; i < 256; i++) {
 updateLEDs(i);
 delay(25);
 }
}

void updateLEDs(int value) {
 digitalWrite(latch, LOW);
 shiftOut(data, clock, MSBFIRST, value);
 digitalWrite(latch, HIGH);
}

Additional thoughts: For more advanced components you will need to read documentation or datasheets to figure out how
to use them. Any documentation is good as long as you can get the correct information out of it. Datasheets are your friends!

CHAPTER 2
How the Circuits Work
Circuit #14: Shift Register

SIK BINDER //39

// Parts of a Multimeter

Display: Where values are displayed.

Knob/Setting: Used to select what is being measured and
the upper limit of how much is being measured.

Positive Port 1: Where the positive port connector is plugged
in if you are measuring less than 100mA of current.

Common/Ground: Where the negative port connector is
plugged in no matter what.

Positive Port 2: Where the positive port connector is plugged
in if you are measuring more than 100mA of current.

Probes: The points of contact for measuring electrical signals.
Place the positive probe closer to the energy source and the
negative probe closer to ground.

Port connectors: Plug them into multimeter.

Important: Sometimes the reading will not remain
steady or will display a value that you believe is
wrong. If this happens make sure your probes are
making firm, constant contact with your circuit on
a conductive material.

Knob/Settings

Positive Port 1

Common/Ground

Positive Port 2
(for signals more than 100mA)

Display

Negative Port Connector

Positive Port Connector

Positive Probe

Negative Probe

Often you will have to use a multimeter for troubleshooting a circuit, testing components, materials or the occasional
worksheet. This section will cover how to use a digital multimeter, specifically a SparkFun VC830L. We will discuss
how to use this multimeter to measure voltage, current, resistance and continuity on the circuits in the S.I.K.

CHAPTER 2
Using a Multimeter

Name:
Date:

SIK BINDER //40

// Settings

Highest Value

Continuity Setting

Highest Value

Lowest Value

Resistance Settings Voltage Settings

Lowest Value

Highest Value

Current Settings

Lowest Value

There are many different settings depending on how much of a signal the multimeter is being used to measure.
This is a good opportunity to talk about unit conversion.

Voltage: The options for measuring voltage range from
200mV all the way up to 600 Volts.

Current: The options for measuring current range from 20µA
all the way up to 10 Amps.

Resistance: The options for measuring resistance range
from 200Ω to 20MΩ.

Continuity: This option is for testing to see if there is an
electrical connection between two points.

Changing com ports:
Use the first positive com port if you are measuring a signal
with less than 100mA of current. Switch to the second
positive com port if you are using more. With the Arduino
you will usually be using the first positive com port.

Replacing fuses:
If you try to measure more than 100mA of current through
the first positive com port you will most likely blow the fuse
in your multimeter. Don’t worry, the multimeter isn’t broken,
it simply needs a new fuse. Replacing fuses is easy, this
tutorial explains it: http://www.sparkfun.com/tutorials/202

CHAPTER 2
Using a Multimeter

Name:
Date:

SIK BINDER //41

To start with something simple, let’s measure voltage on an
AA battery. Pull out your multimeter and plug the black probe
into COM (‘common’) jack and the red probe into mAVΩ.
Set the multimeter to “2V”. Squeeze the probes with a little
pressure against the positive and negative terminals of the
AA battery. The black probe is customarily connected to
ground or ‘-’ and red goes to power or ‘+’. If you’ve got a
fresh battery, you should see around 1.5V on the display!

What happens if you switch the red and black probes?
Nothing bad happens! The reading on the multimeter is simply
negative - so don’t worry too much about getting the red or
black probe in the right place.

For most RedBoard uses you will be measuring voltages that
are 9V or less. Knowing this allows you to start your voltage
measurement setting at 20V and workyour way down.

On a circuit use the multimeter to measure voltage from
one point in the circuit to another point somewhere along
the same circuit. The multimeter can be used to measure
the voltage of the whole circuit (if it’s going from 5V to GND
this will usually read 4.8 to 5V) or just a portion. If you want

to measure the voltage of just a portion of your circuit, you
have to pay attention to where you place your probes. Find
the portion of the circuit you want to measure, and place
one probe on the edge of that portion nearest to the energy
source. Place the other probe on the edge of that portion
nearest to ground. Voila - you have found the voltage of
just that section between your probes! Confused? See the
schematic images below. Still confused? For more on this
see voltage drop.

If your multimeter reads 1. the multimeter voltage setting
you are using is too low. Try a larger voltage setting, if you
still encounter the same problem try an even higher setting.

If your multimeter reads 0 the multimeter voltage setting you
are using is too high. Try a smaller voltage setting, if you still
encounter the same problem try an even smaller setting.

// Measuring Voltage

Section of Circuit Measured

Component Component Component Component

ProbeProbe

CHAPTER 2
Using a Multimeter

Name:
Date:

SIK BINDER //42

To start with something simple, let’s measure the resistance
of a resistor. Pull out your multimeter and plug the black probe
into COM (‘common’) jack and the red probe into mAVΩ. Set
the multimeter to “2kΩ”. Squeeze the probes with a little
pressure against the wires on either end of the resistor. The
black probe is customarily connected to ground or ‘-’ and
red goes to power or ‘+’. The multimeter will measure the
resistance of all the components between the two probes.

It is important to remember to turn off the power of a circuit
before measuring resistance. Measuring resistance is one
of the few times you will use a multimeter on a circuit with
no power.

The example below is a 330Ω resistor. Notice the multimeter
does not read exactly .330, often there is some margin of
error.

When measuring resistance first make sure that the circuit or
component(s) you are measuring do not have any electricity
running through them.

On a circuit use the multimeter to measure resistance from
one point in the circuit to another point somewhere along
the same circuit. The multimeter can be used to measure the
resistance of the whole circuit or just a portion. If you want
to measure the resistance of just a portion of your circuit,

you have to pay attention to where you place your probes.
Find the portion of the circuit you want to measure, and place
one probe on the edge of that portion nearest to the energy
source. Place the other probe on the edge of that portion
nearest to ground. Voila - you have found the resistance of
just that section between your probes! Confused? See the
schematic images below. Still confused? For more on this
see Resistance (Page 48).

If your multimeter reads 1. the multimeter resistance setting
you are using is too low. Try a larger resistance setting, if you
still encounter the same problem try an even higher setting.

If your multimeter reads 0 the multimeter resistance setting
you are using is too high. Try a smaller resistance setting,
if you still encounter the same problem try an even smaller
setting.

You can measure the resistance of any conductive material
whether it is in a circuit or not. Depending on how conductive
the material is you may need to change your resistance
multimeter setting, or even use a multimeter with a larger
range, but if the material is conductive you can measure the
resistance of it. This is an easy way to get students to wander
around getting comfortable with measuring resistance. Maybe
start them off measuring the resistance of some of the S.I.K.
circuits, then move to a penny and finally just set them loose
to measure anything and everything.

// Measuring Resistance

Section of Circuit Measured

Component Component Component Component

ProbeProbe Section of Circuit Measured

Component Component Component Component

ProbeProbe

Section of Circuit Measured

Component Component Component Component

ProbeProbe

CHAPTER 2
Using a Multimeter

Name:
Date:

SIK BINDER //43

Ok, we’re done with simple. Measuring current is a little more
complicated than measuring voltage or resistance. In order
to measure current you will need to “break” your circuit and

insert the multimeter in series as if the multimeter and it’s
two probes were a wire. The pictures below are an example
of how to measure the current of the first S.I.K. circuit.

It doesn’t matter where in the circuit you insert your
multimeter. The important thing is that the electricity has
no choice but to travel through your multimeter in order to
get through the rest of the circuit.

So, pull out your multimeter and plug the black probe into
COM (‘common’) jack and the red probe into mAVΩ. Set
the multimeter to “20mA”. Squeeze the probes with a little
pressure against the two wires you used to “break” your
circuit. The black probe is customarily connected closer
to ground or ‘-’ and red goes closer to power or ‘+’. The
multimeter will measure the total current running through
the circuit.

When you are measuring current the multimeter measures
the current that is present at that very instant. If your circuit
or RedBoard is changing the amount of current you will see
that change happen instantly on your multimeter. In order
to get a good reading make sure you keep the multimeter
connected for at least a couple seconds. (You may also get
two readings, a high and a low.)

If your multimeter reads 1. the multimeter resistance setting
you are using is too low. Try a larger resistance setting, if you
still encounter the same problem try an even higher setting.

If your multimeter reads 0 the multimeter resistance setting
you are using is too high. Try a smaller resistance setting,
if you still encounter the same problem try an even smaller
setting.

// Measuring Current

Unbroken circuit Circuit broken by unplugging wire
connected to power

Multimeter probes touching wire
connected to power and positive lead
of LED, putting multimeter in series

CHAPTER 2
Using a Multimeter

Name:
Date:

SIK BINDER //44

Continuity is how you check to see if
two pieces of a circuit are actually
connected. The multimeter does this
by sending a very small current from
the positive probe to the negative,
when there is electricity present the
multimeter beeps. This is useful when
you have a circuit that you think should
work but doesn’t. Make sure to turn
power off when checking continuity.

Set the multimeter to the continuity
setting as shown to the right. Touch your
probes together and you should hear a
beep. This means that electricity is free
to travel between the two probes without
too much resistance.

If your circuit is plugged in incorrectly,
or if it is broken somewhere (maybe
your breadboard or a wire is broken)
when you touch the probes to the wire
providing power and the wire connected
to ground the multimeter will not beep.
If it were hooked up correctly you would
hear a beep and you wouldn’t be using
the continuity setting!

In order to figure out where the circuit
is broken move one of the probes along
the circuit towards the other probe. Do
this component by component. When
the multimeter beeps you know that the
probes now detect electricity passing
between them so the break must be
between where the probe you are
moving is now, and where it was the
last time the multimeter didn’t beep.

Measuring continuity of the circuit
excluding wire connected to ground
and resistor. Measured continuity
includes LED and two wires connected
to breadboard power rail and power.
Probes are touching resistor wire and
power.

Measuring continuity of the whole
circuit from power to ground. Probes
are touching wires normally plugged
into power and ground.

// Measuring Continuity

CHAPTER 2
Using a Multimeter

Name:
Date:

SIK BINDER //45

Measuring continuity of the circuit excluding wire connected
to ground, resistor and LED. Measured continuity includes
two wires connected to breadboard power rail and power.
Probes are touching negative LED wire and power.

The multimeter can be used to measure the continuity of the
whole circuit or just a portion. If you want to measure the
continuity of just a portion of your circuit, you have to pay
attention to where you place your probes. Find the portion
of the circuit you want to measure, and place one probe

on the edge of that portion nearest to the energy source.
Place the other probe on the edge of that portion nearest
to ground. Voila - you are testing the continuity of just that
section between your probes! Confused? See the schematic
images below.

Continuity is one of the most useful settings on a multimeter
and you will most likely use it constantly simply to check
for connections that aren’t quite connected. Breadboards
sometimes break so if your multimeter tells you there is no
continuity but you know everything is plugged in correctly
try switching breadboards.

The beep of the multimeter only tells you that there is very
little resistance between the two probes. If there is a resistor
in the circuit you will not hear a beep but the display will
show a number indicating there is continuity between the
two probes.

Measuring continuity of the circuit excluding wire connected
to ground, resistor and LED. Measured continuity includes
two wires connected to breadboard power rail and power.
This image looks similar to the image on the left, but the
black probe is touching the blue wire, not the negative LED
wire. Probes are touching blue wire and power.

// Measuring Continuity

Section of Circuit Measured

Component Component Component Component

ProbeProbe Section of Circuit Measured

Component Component Component Component

ProbeProbe

Section of Circuit Measured

Component Component Component Component

ProbeProbe

CHAPTER 2
Using a Multimeter

Name:
Date:

SIK BINDER //46

R1 R2 R3

R1 + R2 + R3 = total resistance

R1 R2 R3

R1 // R2 =(R1 * R2) / (R1 + R2)
total resistance = (R1 // R2) * R3 / (R1 // R2) + R3

{total resistance

C1 + C2 + C3 = total capacitance

{total capacitance

C1 C2 C3

total capacitance

C1 C2 C3

C1 // C2 = (C1 * C2) / (C1 + C2)
total capacitance = (C1 // C2) * C3 / (C1 // C2) + C3

R1 R2 R3

R1 + R2 + R3 = total resistance

R1 R2 R3

R1 // R2 =(R1 * R2) / (R1 + R2)
total resistance = (R1 // R2) * R3 / (R1 // R2) + R3

{total resistance

C1 + C2 + C3 = total capacitance

{total capacitance

C1 C2 C3

total capacitance

C1 C2 C3

C1 // C2 = (C1 * C2) / (C1 + C2)
total capacitance = (C1 // C2) * C3 / (C1 // C2) + C3

R1 R2 R3

R1 + R2 + R3 = total resistance

R1 R2 R3

R1 // R2 =(R1 * R2) / (R1 + R2)
total resistance = (R1 // R2) * R3 / (R1 // R2) + R3

{total resistance

C1 + C2 + C3 = total capacitance

{total capacitance

C1 C2 C3

total capacitance

C1 C2 C3

C1 // C2 = (C1 * C2) / (C1 + C2)
total capacitance = (C1 // C2) * C3 / (C1 // C2) + C3

R1 R2 R3

R1 + R2 + R3 = total resistance

R1 R2 R3

R1 // R2 =(R1 * R2) / (R1 + R2)
total resistance = (R1 // R2) * R3 / (R1 // R2) + R3

{total resistance

C1 + C2 + C3 = total capacitance

{total capacitance

C1 C2 C3

total capacitance

C1 C2 C3

C1 // C2 = (C1 * C2) / (C1 + C2)
total capacitance = (C1 // C2) * C3 / (C1 // C2) + C3

CHAPTER 2
Series and Parallel

Name:
Date:

One of the most important concepts in circuit building is the
difference between components in series and components
in parallel. Basically you can think of components in series
as being one after another, like in a chain, while parallel
components are hooked up next to each other. It’s important
to know how certain components affect your circuit when
hooked up in these two ways. There are a few things to
remember, mostly that resistors and inductors work in the
opposite way from capacitors:

Resistors and Inductors in series can simply be
added together:

Capacitors:

It seems quite dry, but you never know when basic knowledge
like this will come in handy. (Hint: read the next section on
powering your projects)

However, for resistors and inductors in parallel, as well as
capacitors in series, the equation is a bit more complex.
Basically the values between any two elements in these
setups equal the product of the values divided by the sum
of the values. For three elements or more, solve for two
and repeat until done. For example (the // indicates that the
elements are in parallel):

As can capacitors that are in parallel:

Resistors:

SIK BINDER //47

As always, use caution. Batteries of the same kind (same voltage and
capacitance) work best in these kinds of situations. Using different kinds
of batteries may also work but it is not recommended, as the results are
not as predictable.

GND

Batteries in Parallel

Batteries in Series

6V
1000mAh

6V
1000mAh

6V
1000mAh

6V
1000mAhGND

+12V
1000mAh

+6V
2000mAh

CHAPTER 2
Powering Your Projects

Name:
Date:

When dealing with electronics, it is always a good idea to
know how much power you need and how you’re going to get
it. If you want your project to be portable, or run separately
from a computer, you’ll need an alternate power source.
Plus, not all RedBoard’s projects can be run off 5V from the
USB port. Fortunately there are a lot of options, one or more
of which should suit your purposes perfectly.

Understanding Battery Ratings
One popular way to get power to your project is through
batteries. There are tons of different kinds of batteries (AA,
AAA, C, D, Coin Cell, Lithium Polymer, etc). In fact, there
are too many to go over here-however, they all have a few
things in common which can help you choose which ones
to use. Each battery has a positive (+) and negative terminal
(-) that you can think of as your power and ground. Batteries
also have ratings in volts and milliamp hours (written mAh).
Given this info along with how much current your circuit will
draw, you can figure out how long a battery will last. For
example, if I have a battery rated at 1.2v for 2500 mAh, and
my circuit requires 100mA (milliamps) current, my battery
will last around 17.5 hours. Wait, what? Why not 25 hours
you say? Well, you shouldn’t drain your battery completely,
and other factors such as temperature and humidity can
affect battery life, so typically the equation for determining
battery life is:

(Capacity rating of battery (in mAh) ÷ Current Consumption
of Circuit) x 0.7

Note that we could still use our 2500 mAh battery in a 500mA
circuit, but then our battery life would only be 3.5 hours. Make
sense? There’s a lot to understand about powering circuits,
so don’t worry if it’s not all clicking. Just take an educated
guess, be safe, use your multimeter, and make adjustments.
It is also worth mentioning that batteries are not the only
potential source of power for your project. If your project will
be outside or near a window, consider using solar power.
There’s plenty of good documentation online, but basically,
solar cells have the same kinds of voltage and current ratings
that any power source might have; the only difference is
that the percentage you get from your solar panel depends
on how much sunlight it’s getting. (Check out http://www.
solarbotics.com/) for some good products and documentation
using solar power.

So, what if your circuit needs 12v, and all you have are a
bunch of 1.5v batteries? Or what if you need your project to
be powered for longer, but you don’t want to give it too much
power? This is where your knowledge of series and parallel
may actually come in handy.

Here’s the rule:
Connecting batteries in series increases the voltage but
maintains the capacity (mAh) - this what you want to do if
you need more power.

Connecting batteries in parallel maintains the voltage but
increases the capacity. This is what you want to do if you
need your power supply to last longer.

Here’s how to hook them up:

SIK BINDER //48

Circuit 1

LED

Circuit 2

Circuit 3

Bu
tto

n/
Sw

itc
h

Button/Switch

Re
si

st
or

Re
si

st
or

33
0

Ω

33
0

Ω

Re
si

st
or

Resistor

+5v

33
0

Ω

10K Ω

GND

Draw Your Schematic

CHAPTER 2
Resistance

Name:
Date:

Resistance is an important concept when you are creating
circuits. Resistance is the difficulty a current encounters when
it passes through a component. Everything that electricity
passes through provides some measure of resistance: wires,
motors, sensors, even the human body!

Measuring voltage, current and resistance are all done in
different ways. To measure resistance you disconnect
(turn off) your circuit and place both multimeter leads
on either side of the portion of the circuit you wish to
measure. For example: for measuring just a component
you would place your leads on the power and ground leads
of the component. To measure the resistance of multiple
components you leave them connected and place the
positive (red) multimeter lead closer to the disconnected
power source and the negative (black) multimeter lead
closer to the ground. Sometimes you will want to measure
the resistance of input and output leads, but more often you
will find yourself measuring resistance along the power to
ground circuit. It is important to know how much resistance
is present in components and circuits for many reasons. Too
much resistance and the current will never travel through the
whole circuit, too little and the current may fry some of your
components! But most importantly you can use resistance
to choose the path the current takes through your circuit.

Hook up the circuit below using red LEDs. (Don’t hook
up the power yet.)

Measure the resistance of each of the possible paths the
current can take from power (5v) to ground. There are three
possible paths. You will have to measure each component
separately and then add the resistance up for the total. You
will can add the components’ resistance together because
the components are in series, if they were parallel it would
require more math. Record the total resistance for each circuit
below. (Hint: you won’t be able to measure the LED)

Circuit 1: ___Ω Circuit 2: ___Ω Circuit 3: ___Ω

Now connect the power and, one at a time, press the two
buttons. Which circuit makes the LED the dimmest? Circuit

If you press both buttons which path does the current take?
Circuit # ______
If the voltage is staying at 5v in this circuit no matter which
paths are closed, there is a way to calculate the current given
the resistance. Write the name of the law and the equation
that solves for resistance below. Label all variables.

__

Now measure the resistance of a potentiometer when it is
dialed all the way up and down. Record the highest and
lowest values you get.

Highest:______________________ Ω

Lowest:_____________________ Ω

Redraw the schematic below, but use a potentiometer to
control the LED brightness instead of the buttons and various
resistors. Remember that you must have at least 330Ω of
total resistance, otherwise you’ll burn out your LED!

Since a circuit or component does not need a current running
through it in order to measure the resistance you can take
your multimeter and measure the resistance of anything you
can think of. Wander around and measure the resistance
of various objects. Start with a penny. Record the most
interesting things that have resistance and the value of
their resistance below. List at least three.

__

__

__

SIK BINDER //49

LED

LED

LED

Re
si

st
or

+5v

33
0

Ω

GND

GND

LED

LED

LED

+3.3v

CHAPTER 2
Voltage Drop

Name:
Date:

Voltage drop is an important concept when you are creating
circuits. Voltage drop is the amount that the voltage drops
when it passes through a component. The following exercises
will show how to measure voltage drop in real life. This is
essential when you are fixing your remote control car, electric
guitar or even a cell phone.

Measuring voltage, current and resistance are all done in
different ways. To measure voltage you connect your positive
(red) multimeter lead to the side of the circuit that is closer
to your power source and the negative (black) multimeter
lead to the side of the circuit that is closer to the ground. It
is important to know how much voltage is going through a
circuit for many reasons. The most important reasons being
that too much voltage can damage your components and
too little voltage may not allow electricity to flow all the way
through to ground.

Hook up the 5v circuit below using red LEDs.

Close the circuit so only one LED is grounded with the 300
resistor. Insert the end of the resistor not plugged into the
ground into a hole on the same row as the first LED’s negative
lead. The other LEDs don’t light up, why is this?
__

__

__

__

Measure the voltage drop across just the LED and record.
________________v

Measure the voltage drop across the LED and the resistor.
________________v

Close the circuit so two LEDs light up.

Voltage drop across one LED = _____v
Voltage drop across two LEDs = _____v

Measure the voltage drop across the whole circuit and record.
_____________v

Close the circuit so three LEDs light up.

Voltage drop across one LED = _____v
Voltage drop across two LEDs = _____v

Voltage drop for three LEDs = _____v
Voltage drop for whole circuit = _____v

What happened to the LEDs with the last question?
__

__

Now hook up the same circuit to the 3.3V power source
without the resistor.
Why don’t you need the resistor?
__

__

__

__

Measure the voltage drop across all the LEDs and record.
____________v

Close the circuit so only two LEDs light up.

Voltage drop across one LED = _____v

Voltage drop across two LEDs = _____v
Hook up the circuit above to the 5V power source but use
the 3.3v as ground.
Wait a second! You can’t use a power source as a ground!
Or can you?

What is the voltage available and how many LEDs can you
light up with it?

Voltage available = ________v

of LEDs you can light up = __________

Many people think of Gnd as the ONLY place to connect a
‘negative’ pin, but all you need is a voltage drop from the
beginning of a circuit to the end. This difference in voltage
is what draws the current in the correct direction.

SIK BINDER //50

The transistor voltage in signal is the signal
that is used to control the transistor’s base.

Signal in is the power source for the signal
out which is controlled by the transistor’s
action.

Signal out is the output of the signal
originating from signal in, it is controlled by
the collector.

The amount of electrical current allowed
through the transistor and out of the emitter
to ground is what closes the entire circuit,
allowing electrical current to flow through
signal out.

(Or at least heading
 towards Ground)

GND

Voltage In
Transistor Signal

Base

Collector Emitter

Resistor
(optional)

Affected Signal
Signal In (Vcc)

Resistor

Signal Out

Direction of current
when a path to ground

Direction of current

Direction of current
when Voltage In is
greater than or
equal to the necessary
forward bias of
the transistor

KEY:

Power source
somewhere
further up the line.

Output of transistor.
Send this to the
component of
your choice.

Direction of current
when a path to ground
is present

CHAPTER 2
Transistors

Name:
Date:

What is a transistor?
Transistors are semiconductors used to amplify an electrical
signal or switch an electrical signal on and off.

Why is a transistor useful?
Often you will need more power to run a component than
your Arduino can provide. A transistor allows you to control
the higher power signal by breaking or closing a circuit to
ground. Combining this higher power allows you to amplify
the electrical signal in your circuit.

What is in a transistor?
A transistor circuit has four parts; a signal power source
(connects to transistor base), an affected power source
(connects to transistor collector), voltage out (connects to
transistor collector), and ground (connected to transistor
emitter).

How do you put together a transistor?
It’s really pretty easy. Here is a schematic and explanation
detailing how:

Ok, how is this transistor information used?

It depends on what you want to do with it really. There are
two different purposes outlined above for the transistor, we
will go over both.

If you wish to use the transistor as a switch the signal in and
voltage in signal are connected to the same power source
with a switch between them. When the switch is moved to the
closed position an electrical signal is provided to the transistor
base creating forward bias and allowing the electrical signal
to travel from the signal in to the transistor’s collector
to the emitter and finally to ground. When the circuit is
completed in this way the signal out is provided with an
electrical current from signal in.

The signal amplifier use of the transistor works the same
way only Signal In and Voltage In are not connected. This
disconnection allows the user to send differing values to the
base of the transistor. The closer the voltage in value is to the
saturation voltage of the transistor the more electrical current
that is allowed through the emitter to ground. By changing
the amount of electrical current allowed through to ground
you change the signal value of signal out. For examples of
transistor uses see S.I.K. circuits # 12 and # 13.

SIK BINDER //51

Ok, how is this voltage divider information used?

It depends on what you want to do with it really. There are
two different purposes outlined above for the voltage divider,
we will go over both.

If you wish to use the voltage divider as a sensor reading
device you first need to know the maximum voltage allowed
by the analog inputs you are using to read the signal. On
an Arduino this is 5V. So, already we know the maximum
value we need for Vout. The Vin is simply the amount of
voltage already present on the circuit before it reaches the
first resistor. You should be able to find the maximum voltage
your sensor outputs by looking on the datasheet. This is the
maximum amount of voltage your sensor will let through
given the voltage in of your circuit. Now we have exactly

Often resistor # 1 is a resistor with a value that
changes, possibly a sensor or a potentiometer.

Resistor # 2 has whatever value is needed to
create the ratio the user decides is acceptable for
the voltage divider output.

The Voltage In and Ground portions are just there
to establish which way the electrical current is
heading, there can be any number of circuits
before and after the voltage divider.

Here is the equation that represents how a voltage
divider works:

If both resistors have the same value then Voltage
Out is equal to ½ Voltage In.

(Or at least heading
 towards Ground)

GND

Voltage In
Resistor 1

Resistor 2

Direction of current

KEY:

Power source
somewhere
further up the line.

Output of voltage
divider. Send this to
input pins or a circuit
that needs a lower
voltage than the
original voltage source.

Voltage Out

one variable left, the value of the second resistor. Solve for
R2 and you will have all the components of your voltage
divider figured out! We solve for R1’s highest value because
a smaller resistor will simply give us a smaller signal which
will be readable by our analog inputs.

Powering an analog Reference is exactly the same as
reading a sensor except you have to calculate for the Voltage
Out value you want to use as the analog Reference.

Given three of these values you can always solve for the
missing value using a little algebra, making it pretty easy to
put together your own voltage divider. The S.I.K. has many
voltage dividers in the example circuits. These include:
Circuits # 2, 5, 6, 9 and 10.

CHAPTER 2
Voltage Dividers

Name:
Date:

What is a voltage divider?
Voltage dividers are a way to produce a voltage that is a
fraction of the original voltage.

Why is a voltage divider useful?
One of the ways a voltage divider is useful is when you want to
take readings from a circuit that has a voltage beyond the limits
of your input pins. By creating a voltage divider you can be
sure that you are getting an accurate reading of a voltage from
a circuit. Voltage dividers are also used to provide an analog
reference signal.

What is in a voltage divider?
A voltage divider has three parts; two resistors and a way to
read voltage between the two resistors.

How do you put together a voltage divider?
It’s really pretty easy. Here is a schematic and explanation
detailing how:

SIK BINDER //52

SIK BINDER //53

3
Programming

SIK BINDER //54

SIK BINDER //55

CHAPTER 3
Basic Operators and Comments

Name:
Date:

Often when you are programming you will need to do simple (and sometimes not so simple) mathematical operations. The
signs used to do this vary from very simple to confusing if you’ve never seen them before. Below is a table of definitions
as well as some examples:

Arithmetic operators are your standard mathematical
signs

Relational operators are used to compare values and
variables

Logical operators are used to join two or more
conditional statements together

+ (addition)
- (subtraction)
* (multiplication)
/ (division)
% (modulus)
= (assignment)

if (x!=7){
//loop body code here
}

Compares x to the number 7,
executes code inside body loop
if the value of x does not equal 7

if ((x==7)||(x==9)){
//loop body code here
}

Compares x to the number 7 and 9,
executes code inside body loop
if the value of x equals 7 or 9

== (equality)
!= (inequality)
> (greater-than)
< (less-than)
>= (greater than or equal to)
<= (less than or equal to)

Pay attention to = and ==.
= is used to assign variable values,
== to compare values.

! (NOT)
&& (AND)
|| (OR)

Arithmetic Operators

Relational Operator Example

Logical Operator Example:

Relational Operators

Logical Operators

// Basic Operators

SIK BINDER //56

As you use code other people have written you will notice //, /* and */ symbols. These are used to “comment” lines out
so they do not affect the code. This way people who write code can add comments to help you understand what the code
does. Good code has comments that explain what each block of code (functions, classes, etc.) does but does not explain
simpler portions of the code as this would be a waste of time. Commenting lines out is also a very useful tool when you
are writing code yourself. If you have a section of code you are working on, but isn’t quite finished or doesn’t work, you
can comment it out so it does not effect the rest of your code when you compile or upload it.

This is used to comment out a single line

//commented out line

This is used to start a section of commented lines

/*comments start here

This is used to end or close a section of
commented lines

comments end here*/

// /*

*/

// Comments

CHAPTER 3
Basic Operators and Comments

Name:
Date:

SIK BINDER //57

CHAPTER 3
Programming Concepts, Variables

Name:
Date:

// Vocabulary: Variable, Boolean,
Integer, Character, Value
Variables are one of the most important concepts in
computer programming. But what exactly are variables?
Variables are like baskets that hold pieces of information.
There are a couple different kinds of variables depending
on what kind of information you need to keep track
of. You have probably already heard of most of the
different kinds of variables. Here are the definitions of
three different kinds of variables. There are more types of
variables, but, let’s start with these.

• Boolean variable: A boolean variable can be true or false
(one or zero).
• Integer variable: An integer variable can be any whole
number between −32768 and 32767.
• Character variable: A character variable can be any one
letter (or punctuation or symbol).

Below is a robot, answer the questions to the right of the robot
and be as silly as you want. Then write the type of variable
you would use to store this information. For a boolean write
“boolean”, for an integer write “int” and for a character
write “char”.

The number, or character, you put into a variable is called
its value. Once you have created a variable you can change
the value whenever you need to. For example, if we decided
the robot is 1000 years old, in a year we need to be able to
change its age to 1001. First we need to create a variable
to keep track of its age. We can name the variable whatever
we want, but “age” makes sense so we’ll go with that. Then
we need to put a value into the variable. The first value was
1000, but a year later we delete that value and replace it
with the new value, 1001. Pretty easy, huh? If we wanted
to keep track of how old the robot used to be when we met
it we could create a new variable called “ageWeMet”. That

way when we have to change the “age” variable we can
keep track of how old the robot was when we met it in the
other variable “ageWeMet”. You may have noticed that there
are no spaces in the name of this second variable. That is
because variable names can’t have any spaces.

Circle the variable in the sentences below and put a box
around the value.

The robot’s favorite letter is Q. The robot’s height is 100 ft.

The robot’s power is on.

Is this robot good at skateboarding? _________________

How old is this robot?____________________________

What is the first letter of this robot’s name?____________

How many years has it been skateboarding?___________

Is it wearing pants? _____________________________

What is the first letter of the robot’s dog’s name? _______

Is the robot going to crash? _______________________

How many feet of air has this robot gotten? ___________

Variable type:_____________

Variable type:_____________

Variable type:_____________

Variable type:_____________

Variable type:_____________

Variable type:_____________

Variable type:_____________

Variable type:_____________

SIK BINDER //58

Name:
Date:

CHAPTER 3
Programming Concepts, Boolean

// Vocabulary: Boolean, Declare, Assign
OK! You’re ready to start programming your first boolean
variable. Anytime you see italics like this it is an example
of how you would write something in the Arduino language.

• A Boolean variable is the simplest kind of variable, it is
either true or false.
• True is represented by a one or HIGH and false is
represented by a zero or LOW.
• HIGH can be used as true, but it means there is electricity
flowing through a circuit.
• LOW can be used as false, but it means there is no
electricity flowing through a circuit.
• To create a Boolean variable you type the following:
boolean variableName;
• Creating a variable is called “declaring” a variable.
• The variableName can be anything you like, but it should
make sense to you.

For example you could declare a Boolean variable named
dayLight(boolean dayLight;) that represents whether it is
daytime or not. Once you have declared your variable it is
not equal to anything, it is empty and waiting for you to set
it equal to true or false. To do this you type the following:
dayLight = true; or dayLight = 1;. (Don’t forget the ; at the
end, it’s very important! It is called a semicolon and it tells
the computer that you are finished doing something.)

This means that dayLight is true, and you can see the sun.
Setting a variable equal to a value is called “assigning”.
Declare three Boolean variables about the robot on this
page in the spaces below and then assign them values of
true or false (or one or zero). Remember, you can name the
variables whatever you want! They’re your variables, it’s up
to you. Look at the example above if you are unsure of how
to declare and assign. (Don’t forget the semicolons at the
end of each line, they’re important!)

Declare:

Assign:

List three of the silliest things you can think of that you
might keep track of with a boolean variable. Examples: Do
I have peanut butter in my ear? Are penguins good to use
as dodgeballs?

__

__

__

__

Now pick one of the silly ideas above. In the space below
declare your silly variable and then assign it a value. For
example: boolean peanutButter; peanutButter = true; This
means that I do have peanut butter in my ear... maybe I am
saving it for lunch.

__

__

__

__

SIK BINDER //59

CHAPTER 3
Programming Concepts, Integer

Name:
Date:

// Vocabulary: Boolean, Declare, Assign // Vocabulary: Integer, Declare, Assign
Wow! You’re ready to start programming your first integer
variable. Anytime you see italics it is an example of how you
would write something in Arduino language.

• An Integer variable is a number (no fractions or decimals)
between -32768 and 32767.
• To create an Integer variable you type the following:
int variableName;
• This is called “declaring” a variable.
• The variableName can be anything you like, but it should
make sense to you.
• To assign an Integer variable the value 120 type the
following: variableName = 120;

For example you could declare an Integer variable
named clouds (int clouds;) that represents the number of
clouds in the sky. Once you have declared your variable

it is not equal to anything, it is empty and waiting for
you to set it equal to a number between −32768 and
32767. To do this you type the following: clouds = 8;.
(Don’t forget the ; at the end. This is called a semicolon
and it’s how the computer knows you are finished doing
something.)

This means that you can see eight clouds in the sky. Setting
a variable equal to a value is called “assigning”. Declare
three Integer variables about the picture on this page in the
spaces below and then assign them values between −32768
and 32767. Include at least one variable with a negative value
and one variable with a value greater than ten. Feel free to
make up variables and values that you can’t actually see in
the picture. Try to keep it making sense. Look at the example
above if you are unsure of how to declare and assign. (Don’t
forget the semicolons at the end of each line!)

Declare:

Assign:

List three of the silliest things you can think of that you might keep track of with an integer variable. Example: How many
pieces of ham do I have in my pocket? How many bugs could you fit in a rocket?

Now pick one of the ideas above. In the space below declare your variable and assign it a value.
For example: int ham; ham = 1073; I either have big pockets or small pieces of ham.

SIK BINDER //60

CHAPTER 3
Programming Concepts, Char Variables

Name:
Date:

// Vocabulary: Character, Declare, Assign
OK! You’re ready to start programming your first character
variable. Anytime you see italics it is an example of how you
would write something in the Arduino language.

• A Character variable is a single letter, symbol or number.
• To create a Character variable you type the following:
char variableName;
• This is called “declaring” a variable.
• The variableName can be anything you like, but it should
make sense to you.
• To assign a Character variable the value “Q” you type
the following: variableName = ‘Q’;

For example you can declare a character variable named
weather (char weather;) that uses a letter to represents the
weather. You can use the letter R to mean it is raining, S for
snow, and C for clear. Once you have declared your variable
it is not equal to anything, it is empty and waiting for you to
set it equal to a character.

To do this you type the following: weather = ‘C’;. (Don’t forget
the ; at the end. This is called a semicolon and it’s how the
computer knows you are finished doing something.) Also,
there are many different character types other than a letter:
!?*%$&@ are all valid characters.

For example, weather = ‘C’; means that the sky is clear, but
that’s just because you decided it means that. C could mean
whatever you need to keep track of. For example C could
mean that it is cold out, if that’s what you decided. Setting
a variable equal to a value is called “assigning”. Declare
three Character variables about the picture on this page in
the spaces below and then assign them character values
that make sense. Check the example when you are assigning
a value, this can get tricky. Make sure the variable names
describe the object you want to keep track of. Look at the
example above if you are unsure of how to declare and
assign. (Don’t forget the quotation marks and semicolons
at the end of each line!)

List three of the silliest things you can think of that you might keep track of with a Character variable. Example: What color
lollipops do robots eat? What’s a pirate’s favorite letter?

Declare:

Assign:

SIK BINDER //61

CHAPTER 3
Programming Concepts, Variables

Name:
Date:

Purpose: Group activity teaching how to declare and assign
the variable types Boolean, Integer and Character. Text in
italics denotes actual Arduino code.

Materials: None

Vocabulary to be explained prior to activity:
Variable: A way to store a piece of information that may
change.
Value: Piece of information assigned to a variable.
Declaration: Creating a variable, when you declare a variable
it has no value.
Assignment: Sets or resets the value of a variable.

Types of variables:
Boolean: This variable type has only two values. True or false,
which can also be represented as one and zero or HIGH and
LOW. Arduino syntax: boolean
Integer: This variable type is used to store whole
numbers. Because RedBoard uses two bytes to store
integers it can only store numbers from −32768 to 32767.
Arduino syntax: int

Character: This variable is used to store any character
you can type on a keyboard (and some you can’t). It is
basically an integer, but it is used for letters and characters.
It is mainly used to print messages or send messages when
human interaction is needed. Arduino syntax: char

Declaring variables:
Boolean: boolean variableName;
variableName can be anything as long as it makes sense
and has no spaces in it.

Example: boolean pamHappy; This variable could be used to
indicate if Pam is happy or not. Remember the semicolon,
it’s important!

Integer: int variableName;
variableName can be anything as long as it makes sense
and has no spaces in it.
Example: int pamAge; This variable could be used to indicate
how old Pam is. Remember the semicolon, it’s important!

Character: char variableName;
variableName can be anything as long as it makes sense
and has no spaces in it.
Example: char pamShirtColor; This variable could be used to
indicate the color of Pam’s shirt. Remember the semicolon,
it’s important!

Assigning variables:
Assigning variables is really easy! No matter what type of
variable you simply type the variable name followed by a
single equals sign and then the value you are assigning to your
variable followed by a semicolon. Example: pamShirtColor
= ‘p’; Values have certain requirements depending on their
types. A boolean needs to be true or false (or one or zero), an
integer should be a number between -32768 and 32767 and
a character should be a single character with single quotation
marks around it. Finally, remember the semicolon, it’s
important!

Activity

Activity

SIK BINDER //62

Activity:
Students should have completed the introduction to variables
worksheet that comes with this activity. Examples of
variable types, declarations and assignments can be posted
somewhere visible in the classroom to help students who are
not completely comfortable with the concepts yet.

Students go around in a circle declaring variables that apply
to themselves and other students. For example, if they wish to
declare a variable about their age they would need to declare
an integer variable with a name that makes sense. It is up to
the students how specific they want to get, they can declare
an integer variable named age, or they could go so far as
to declare a variable named pamAge. The difference is that
the variable age can apply to anyone, the variable pamAge
is specific to a person named Pam. A boolean variable can
be used for any quality that is either yes or no. For example,
a student might declare pamHappy as a boolean variable to
indicate whether Pam is happy or not. Character variables can
be used to keep track of anything that does not fit nicely into
either integer or boolean. For example, a student may create
a variable called pamShirtColor. Declaration of variables
should be in the syntax used in Arduino, for examples see
previous page.

Once each student has declared a variable go around the
circle and have each student assign a value to their variable.
Assignment of variables should be in the syntax used in
Arduino, for examples see previous page.

Additional activities:
Students can declare their variables on pieces of construction
paper. Each variable type should have a distinct color or
shape (or some other way to identify the variable type other
than the declaration). Students can write their variable
declaration and assignment for display and personalize the
construction paper so it makes sense with their variable
name. Throughout the unit students should be encouraged
to reassign the value assigned to their variable if it changes.
Obviously you will probably want to have a designated time
for variable reassignment to avoid classroom disruption.
For example, Pam may declare char pamShirtColor; on a
shirt shaped piece of yellow construction paper (yellow to
designate it a character variable). Pam can then tape a piece
of paper with the letter ‘B’ (don’t forget the single quotation
marks) to indicate she is wearing a blue shirt. The next day
Pam may then replace the letter ‘B’ with a ‘P’ to indicate that
today she is wearing a purple shirt. You may want to limit
reassignment to once a week if your class has a tendency
to be overzealous about activities like this.

If your students are having difficulty with the concept of
variable types try this activity: Create three different shaped
holes in a board, designate one hole for each of the three
variable types. Label each hole with the corresponding
variable type and definition. Create or buy a bunch of objects
that can only fit through one of the holes and label the objects
with values that correspond to the variable type. Give the
objects out to students and explain that each object can
only be one of the three different type of variables and the
students need to match up the objects with the variable types
by putting them in the corresponding holes.

Activity

CHAPTER 3
Programming Concepts, Variables

Name:
Date:

Activity

SIK BINDER //63

Name:
Date:

CHAPTER 3
Programming Concepts, If Statements

// Vocabulary: If, Parenthesis,
Curly Brackets
The If statement is one of the most basic building blocks in computer programming. The easiest way to understand a
computer language If statement is to look at real life If statements first. If statements have two different parts, the question
and what happens if the answer to the question is yes. Below are a bunch of real life if statements. On the left are the
questions or “if” portions of the If statements. On the right are the actions that happen when the answer to the questions
are true. Unfortunately only the first If statement is connected to the correct action, the rest are up to you.

In computer programming the If statement works the same
way as real life. There is a question and something that
happens if the answer to the question is “yes”. The question
is written inside of the parenthesis () and whatever happens
if the question is true is written inside of the curly brackets { }.

Here are a couple examples of pseudo-code versions of
If statements:

If (you play around with electronics){then you can build some
cool stuff}

If (you remember parenthesis and curly brackets){then If
statements are easy}

If (you understand If statements){then you are on your way
to learning programming}

Just remember: If (the answer to this question is yes) {then
do this}

Example of an If statement:
if (val == HIGH) {
digitalWrite (ledPin, LOW);
}

All If statements start with “if” followed by the question in
parenthesis. In this example the question is; does the variable
“val” equal HIGH? (HIGH is a boolean value that is the same
as true. HIGH means there is electricity present and LOW
means there is not.) If “val” does equal HIGH then Arduino
does whatever is inside of the two curly brackets { }. In this
case it tells ledPin it should not conduct electricity. Here is
a pseudo-code of the same If statement:

If (the variable “val” has electricity running through it) {then
tell (the pin ledPin, to turn off) }

If parts of this last example don’t make sense, don’t worry,
the important thing is to understand what an If statement is.
So... If (the last example didn’t make sense) {don’t worry}.

Draw a line between the two that make the most sense together.
The first one is done for you:

If you play around with electronics

If you run over a porcupine with your bike

If you are an alien

If you do push ups and pull ups

If you put peanut butter in your sock

If you eat too much candy

If you bike everywhere you go

If you go fishing in a canoe

If you are a pirate

If you today is your Birthday

If you are a parakeet

Then you can build some cool stuff.

Then your feet will smell funny.

Then you pollute less.

Then you say Arrrrr a lot.

Then you have feathers and don’t like cats.

Then you might catch a fish or fall in.

Then you might have six arms and one eye.

Then someone might sing Happy Birthday.

Then you get stronger.

Then you get a flat tire.

Then you get sick.

Activity

SIK BINDER //64

Name:
Date:

CHAPTER 3
Programming Concepts, If Statements

Write three of the funniest, or most interesting, If
statements you can think of in the space below. Don’t
worry about putting them inside of parenthesis and curly
brackets, we’ll get to that later.

Example 1: If dinosaurs were still alive then we would have
to run a lot more.

Now write your If statements the way they would look
with the parenthesis. Don’t forget the difference between
the two different kinds of parenthesis!

Example 1: If (dinosaurs were still alive) {then we would have
to run a lot more.}

But what if there are two or more things that could
happen if the question is true?

Example 2: If dinosaurs were still alive then we would have
to run when we were outside, but if they were our pets we
could walk and we would need really big litter boxes.

Is this really just one If statement? No, it’s actually two,
and one of the If statements is inside the other. Don’t
worry! This is ok, in fact it happens all the time. Here is
how it looks in pseudo-code:

Example 2:	
If (dinosaurs were still alive){
then we would have to run a lot more, but
If (they were our pets) {
we could walk and we would need really big litter boxes} }

It may look complicated but it’s just one If statement
inside of another. There is no limit to how many Ifs you
can put inside of another If statement. Go ahead and
write one If statement with another If statement inside
of it in plain English below. Make sure you use the word
“if” twice.

Now you’re going to take that sentence and turn it into
pseudo-code. Pay attention to where the parentheses
and curly brackets are and how many there are. Start
with writing the first question, put a curly bracket just
after the question like this { and then put a curly bracket
at the very end of the lines like this }. Now put what
happens when the question is true and the second If
statement inside of your first two curly brackets. If
(you’re confused) {look at example number two.}

SIK BINDER //65

Name:
Date:

CHAPTER 3
Programming Concepts, If Statements

If (__)
{ then you can fly. }

(your dog runs away)
{ then you need to go looking for your dog. }

If (you are hungry)
{ ___________________________ }

If (__)
{ then you burp. }

If (you want to become an astronaut)
{ _______________________________ }

If (_____________________________)
{ ____________________________ }

(you build a robot)
{ ___ }

If (you build an electronic drum set)
then you can practice quietly.

If (you are an elephant)
{ _______________________________ }

(you make pancakes)
{__________________________}

If (_____________________________________)
{ you should hit the pinata. }

(you want pizza)
{_____________________________}

Now that you understand the basics of If statements you’re going to practice filling in various parts of some If statements.
These If statements are not written in code, but you should be getting comfortable with what goes where as well as the
parenthesis and curly brackets. Remember, you will only do what is in the curly brackets if the question is true. Fill in the
blanks and if you feel like it make them funny.

SIK BINDER //66

Purpose: Group activity teaching the concept of If statements and
their syntax.

Materials: Cut up sheet of silly conditionals and actions.

Vocabulary to be explained prior to activity:

If statement:
These simple statements exist in real life as well as in computer
programming. They are simple statements that indicate if something
is true or has occurred, then a resulting action takes place.
If statement pseudo-code: If (conditional) { action }

if:
The word that always starts an If statement. It’s never capitalized.

Parenthesis () :
Indicates and bookends the conditional portion of an If statement.

Conditional:
The question or condition that if true initiates the action of the If
statement.

Curly brackets { } :
Indicates and bookends the action portion of an If statement.

Action:
Portion of code that occurs when the conditional is true. This can be
anything including another If statement.

Activity:

Preparation:
Cut up the conditional and action portions of the silly If statements
included with this activity, or you can write your own and cut those up.

Activity:
First mix and then distribute the slips of paper among your students.
Explain the concept of an If statement to your students and then have
them try to match up all the conditionals with the resulting actions. It
is possible to mismatch the conditionals and actions, but this portion of
the activity is mainly to have fun and establish the idea of a conditional
and a resulting action, so don’t worry if the kids mismatch some, just
make sure you get some laughter out of this portion of the activity.

Second have seven students stand up to model portions of the If
statement. The first student is the “If”, the second student is the first
parenthesis, the third student is the conditional, the fourth student is
the closing parenthesis, the fifth student is the first curly bracket, the
sixth student is the resulting action and the final student is the closing
curly bracket. Students then model one of the silly If statements they
have matched up. Each student reads or says aloud the portion of
the If statement they represent. Once the seven students have gone
through the If statement, the last student sits down, all the standing
students move one space over to the right and a new student stands
up to join the group as the “If” portion. Students should cycle through
this way until either everyone has had a turn to be each part of the If
statement, or all the silly If statements have been used up. Encourage
students who are representing the parenthesis and curly brackets to
make parenthesis and curly brackets with their arms to demonstrate
which are opening parenthesis and curly brackets and which are closing
parenthesis and curly brackets.

Once the If statements and position of the parenthesis and brackets
have been established in your classroom you can use the semantics
where ever you see fit. For example, If (we line up quickly and quietly)
{ then we will have more recess time. }

CHAPTER 3
Programming Concepts, If Statements

Name:
Date:

Activity

SIK BINDER //67

Name:
Date:

CHAPTER 3
Programming Concepts, Loops

// Vocabulary: repetition, header,
loop body, curly brackets
In computer programming repetition means repeating a portion of code. This can happen in a bunch of different ways, but the most
important thing is to first understand how it happens, not all the different ways it can happen. There are really only two portions to any
repetition, the header and the loop body. The header usually looks about the same, but the loop body can contain any kind of code
depending on what you are programming. The loop body can even contain another repetition!

Repetition with the header, loop body, semicolons and curly brackets labeled:

Just so we’re clear on the important concepts that we will use when we talk about each different
kind of repetition, please fill in definitions or explanations of the terms below.

Repetition: ___

Header: __

Loop body: __

Curly brackets: ___

void loop ()

variableN = 0;

for (int X = 0; X < 100; x = x + 1)

while (variableN < 10)

variableN = variableN + 1;

}

}

}

Header

Header

Header

curly brackets

curly brackets

curly brackets

Loop body code goes here,
between the curly brackets. In
this example there is no code.

This is not a part of the while loop,
it just sets variableN equal to zero
before the while loop happens.

semicolons seperate three
sections of the header

Loop body code goes here,
between the curly brackets. In
this example there is no code.

Loop body code goes here, between the curly
brackets. In this example it changes variableN
so you’re not stuck in the while loop forever.

loop ():

while ():

for ():

SIK BINDER //68

CHAPTER 3
Programming Concepts, Repetition

Name:
Date:

// Vocabulary: loop ()
The most common form of iteration in Arduino is called the
loop() function. It exists in all Arduino sketches and its whole
purpose is to do all the code written inside of it once, then
start over back at the beginning of the loop() function and do
it all again. Pretty simple, right? The most important things
to remember about the loop() function are that it is present
in every single Arduino sketch, can only be used once per
sketch, and it never ends. You will not find a single Arduino
sketch that does not have a loop()function in it and whenever
anything happens in your sketch it is because of code inside
the loop() function.

The loop() function looks like this:

void loop(){
 // Lots (or just a little) of loop body code here between curly
brackets.
}

Pay attention to the header and the curly brackets which
are at the beginning and end of the loop body code. The
header is just void loop(). Think of the loop() function as a
racetrack. The loop() header portion is the flag that starts the
computer going around the racetrack and the curly brackets
are the beginning and end of the racetrack. Now imagine your
computer, Arduino, or robot running around and around the
racetrack. It’s up to you, the programmer, to put If statements,
variables and other code along the way around the racetrack.

SIK BINDER //69

CHAPTER 3
Programming Concepts, Repetition

Name:
Date:

// Vocabulary: while, loop ()
So, you just learned about loop(
), which is the simplest form of
repetition, but there are many other
forms of repetition in Arduino. Another
very common form of repetition
is the while loop. A while loop is
used when you want the computer
or Arduino to do some code while
a statement is true. The while loop
is usually found inside of the loop()
function. The code of a while loop has
two parts, the header and the loop
body code. The header is the most
important part to learn and always
has the same structure. The code in
the curly brackets below the header
can be anything, it just depends on
what you want to happen each time
the computer goes around your while
loop.

The header of a while loop has the
word while and a statement inside of
parenthesis. The while loop checks to
see if the statement inside of the
parenthesis is true and will repeat as
long as that statement remains true.
Pretty simple, right?

While loop example with variable declaration. Explanation of the while loop example.

What happens during the while loop above using our robot racetrack as an example:

At the beginning: Later on, after 100 laps:

SIK BINDER //70

CHAPTER 3
Programming Concepts, Repetition

Name:
Date:

// Vocabulary: for, loop ()
So, you just learned about while, which is a simple form of repetition, but there are many other loop functions. Another very
common form of repetition is the for loop. A for loop is used when you want the computer or Arduino to change a variable
each time through the loop and do code which often uses that variable. For loops are usually found inside of the loop()
function. The code of a for loop has two parts, the header and the code inside the loop. The header is the most important
part to learn and always looks about the same. The loop body code in the curly brackets below the header can be anything,
it just depends on what you want to happen each time the computer goes around your for loop.

The header of a for loop has the word for and in parenthesis three parts called start, check and change. Each of these parts
have semicolons between them so you can tell them apart. These three parts (circled in gray below) are the most important
parts to understand, they are the three simple parts you need to make a for loop work.

Start:
The first circled part is start, this happens before anything
else, it’s sort of like putting on running shoes before
starting to run around the track. It is a simple declaration
and assignment of a variable, in this case the variable is an
integer named x.

Check:
The second circled part is check. Every time the computer
gets to the end of the for loop the computer will check to see
if this part is true. The first time the for loop above checks,

x is equal to zero, so the for loop continues, does change
and then the code inside the curly brackets. It’s kind of like
checking how many laps a racer has completed to see if the
racer has finished the race.

Change:
The third circled part is change, after the variable is checked
it changes so that it is closer to making the check statement
false so the for loop stops. For a racer this part of the for loop
is like adding to (or updating) the number of laps or miles
the racer has completed so far in the race.

SIK BINDER //71

CHAPTER 3
Programming Concepts, Repetition

Name:
Date:

// Vocabulary: for, loop ()
Here is an example of what happens when the for loop on the previous page begins using our
robot racetrack as an example:

The next time the racing robot makes its way around the track to the starting line it has to check
again. It doesn’t have to start again, but it does need to check to see if the race is over. The first
time around the track, x will equal one and the check that x is smaller than 100 is still true. The
robot changes the variable by adding one to x again (x now equals two) and then the robot runs
around the track executing the loop body code between the curly brackets. The robot will continue
to run around the racetrack until x equals 100 at which point the computer exits the for loop.

SIK BINDER //72

CHAPTER 3
Programming Concepts, Nested Repetition

Name:
Date:

// Vocabulary: Nested, Repetition
Now that you know about repetition we can talk about ways to
put code inside of other code, which is called nesting, and in
fact most loops are nested loops since they are inside of the
original loop() function. It’s easy, all you do is put your loop
inside the curly brackets of another loop. Nested if statements
work exactly the same way as nested loops.

Example of nested loop:
void loop () {
int x = 0;
while (x < 10) {
x = x + 1;
}
}

Example of nested if statement:
if (int x < 10) {
if (x == 5) {
//code here happens if x < 10 & x = 5
}
//code here happens if x < 10
}

Imagine your loop() racetrack with another for loop racetrack
attached to it. This way each time the robot runs (or drives or
whatever) around the racetrack it must stop when it reaches
a new while loop, run around that race track until that while
loop is over and then it can continue running around the
larger loop() racetrack.

The robot has to run through the whole while loop before it
can continue running around the larger loop racetrack. But
let’s break it down a little more; x starts as zero, if x is less
than ten the robot continues running around the while loop
until x is not less than ten. If the robot is adding one to x
each time it checks the while loop then the robot must run
around the while loop a total of ten times. The robot then
exits the while loop and continues around the loop racetrack.
Next time around the racetrack the variable x will be set to
zero again just before the while loop. So, you don’t have to
worry about the while loop not working due to x being more
than or equal to ten.

You can nest as many loops inside of other loops as you like,
just make sure you don’t get stuck inside of a loop. One way
to do this is to misplace curly brackets, so make sure they’re
in the right spot. If this happens your computer or Arduino will
just freeze and you won’t really be able to tell why.

Nesting works for code other than just loops! You can nest
if statements, loops and many other code structures. All you
need to remember is that nesting is a complicated way to
say “put code inside of other code” and that the computer
eventually needs to get out of the nested statements and
back to the loop() function so everything can start over again.

SIK BINDER //73

Vocabulary to be explained prior to activity:

loop or repetition:
A section of code that repeats.

repetition header:
The line at the very beginning of a loop that tells the computer
how the code inside the loop will repeat. This section is
different for each different type of loop.

Conditional or question:
This is the statement that is checked to see if the loop is
completed. Conditionals are present in loop headers and
often look like this: x < 10. This indicates that the loop will
continue until x < 10 is false.

Increment:
The section of code (may be in the header or may be in the
loop body code) used to change the variable that is checked
in the conditional. Using the example above, x = x + 1, one
is added to x getting it a little closer to being larger than or
equal to 10.

Nested repetition:
A loop inside of a loop. This concept is key for any type of
even slightly advanced programming.

• loop:
This loop is the most basic of all loops (that’s why it’s called
loop) and is present in all Arduino sketches. loop() repeats
as long as there is power to the Arduino. Inside this form of
repetition is where you will find all other forms of repetition.

Header:
loop()

Increment:
N/A

Conditional:
Power must be on.

• while:
This loop repeats as long as the conditional listed inside the
parenthesis is true. This loop’s conditional is incremented
in the body code or through an Arduino input.

Header:
while()

Increment:
In body code or Arduino input

Conditional:
Inside header parenthesis.

• for:
This loop repeats as long as the conditional listed inside the
parenthesis is true. The for loop header declares a variable,
checks a conditional and increments the conditional variable
all inside the parenthesis...

Header:
for (int x = 0; x < 10; x = x + 1)

Increment:
Inside header parenthesis, in this example x = x + 1.

Conditional:
Inside header parenthesis, in this example x < 10.

Types of loops:

CHAPTER 3
Programming Concepts, Repetition

Name:
Date:

Activity

Purpose: Group activity teaching the concept of repetition as
used in Arduino programming. Text like this denotes actual
Arduino code.

Materials: Cones, large boards to display loop headers and
pseudo-code, equipment for physical activities, and a field
or gym.

SIK BINDER //74

Preparation:
This activity is a physical activity and you will need to set
up an obstacle loop or course that reflects the repetitions
you have decided to include in this activity. You may wish
to work with a gym teacher in order to set this activity up.

The examples in this activity require three different stations.
These include a “loop” station at the beginning of the obstacle
course with a teacher or student helper, a “while” station
with jump ropes and an area for spinning in circles, and
a “for” station with an area for doing jumping jacks and
shooting basketballs.

Each station will need a poster displaying the pseudo-code
that students need to follow in order to complete the obstacle
loop. The poster materials are included with the rest of the

activity materials in the folder programming in the file called
LoopActivityMaterials.

You will also need a field for kids to run around or cones to
set up an area for kids to run around inside a gym.

Also- this is a really big activity. It takes a lot of prep and
will probably be chaos the first time you try it, but it is easily
customizable to age or skill level and should be lots of fun
if you stick with it.

Activity:
Students should have completed the introduction to repetition
worksheets that come with this activity. Students should also
be familiar with variables and if statements.

What your loop activity might look like:

CHAPTER 3
Programming Concepts, Repetition

Name:
Date:

Activity

SIK BINDER //75

The idea is that the complete obstacle course from the start
position back to the start position represents the loop ()
function. Inside this loop () function are two nested loops, a
while () loop and a for () loop.

At the beginning of the obstacle course each student needs
to declare an integer variable called lapNumber or something
similar. This variable will be used in each of the loop activity
areas and the lap increment area. The lapNumber variable
can also be used to end the obstacle course if you do not wish
to have students run the obstacle course until the end of the
period. When students start the obstacle course lapNumber
should equal zero since they have not run any laps yet.

Nested loop activity areas: These areas are nested loops
where students will perform a certain number of tasks
depending on what your loop headers say. You can
have as many or as few activity areas as you like. You
may also tailor the number of physical tasks inside these
nested loops to make your obstacle course more fun
for your students.

These activity areas should look like little loops that the
students can run around completing tasks. The headers
should follow the format of the loop type it represents.
For examples see the end of the activity. Once inside the
nested loop activity area students must complete the physical
activities according to the pseudo-code posted inside the
nested loop activity area. Once students are done with the
first repetition of the physical activities inside the nested
loop activity areas they should look at the header again and
decide if they have completed the nested loop represented
by the header. With younger students you may want to have
someone helping them with this step. (This can be fun, the
observer can yell out error in a friendly voice if students
exit the loop too quickly) Once students have completed the
nested loop activity area they continue around the obstacle
course to the next activity.

Header examples:
If a student’s lapNumber is equal to three and the
pseudo-code header reads:

while (lapNumber > basketsMade) {
do (lapNumber * 2) jump ropes at jump rope station
shoot lapNumber basketball baskets
}

This time around the obstacle course, the student would run
through the nested loop activity area once, jumping rope six
times and shooting three baskets along the way.

If a student’s lapNumber is equal to three and the
pseudo-code header reads:

for (int x = 0; x < lapNumber * 2; x = x + 1) {
do (x * 2) jump ropes at jump rope station
shoot lapNumber basketball baskets
}

The student would run through this nested loop activity six
times jumping rope a different amount and shooting three
baskets each time for a total of thirty six jump ropes and
eighteen baskets.

There is a lot of room for personalization in this activity; it’s
an opportunity to really solidify the loop concept as well as
getting your kids some exercise.

CHAPTER 3
Programming Concepts, Repetition

Name:
Date:

Activity

SIK BINDER //76

Lap increment area:
The lap increment area is where students will add one to
their lapNumber variable to keep track of how many times
they have run the obstacle course. You can also set up the
headers and nested loop activities to use the lapNumber
variable. The lap increment area is where you might insert
an if statement to end the obstacle course after students
complete a certain number of laps.

Additional thoughts:
Definitely call the obstacle course a loop() instead of an
obstacle course in order to really get kids comfortable with
the concepts. You may also wish to include your students in
the planning of the obstacle course. Planning the obstacle
course is another opportunity to talk about the loop concept
and it gives them a stake in the learning exercise. Lastly, not
that this needs pointing out, but this is a great activity just
prior to computer lab time. Instead of having kids bouncing
off the monitors they will be calmer and ready to sit still
applying the concepts they just solidified through physical
activity. This is great for kinesthetic learners in particular.

CHAPTER 3
Programming Concepts, Repetition

Name:
Date:

Activity

SIK BINDER //77

4
Serial

SIK BINDER //78

SIK BINDER //79

Name:
Date:

CHAPTER 4
Serial Communication

Serial is used to communicate between your computer and the RedBoard as well as between RedBoard boards
and other devices. Serial uses a serial port also known as UART, which stands for universal asynchronous receiver/
transmitter to transmit and receive information. In this case the computer outputs Serial Communication via USB while
the RedBoard receives and transmits Serial using, you guessed it, the RX and TX pins. You use serial communication every
time you upload code to your Arduino board. You will also use it to debug code and troubleshoot circuits. Basic serial
communication is outlined in the following pages along with a simple activity to help you understand the concepts.

Serial Monitor:
This is where you monitor your serial communication and set baud rate.

In the examples above there is no Serial communication
taking place yet. When you are running code that uses
Serial any messages or information you tell Serial to
display will show up in the window that opens when you
activate the monitor.

Things to remember about Serial from this page:
1. Serial is used to communicate, debug and troubleshoot.
2. Serial baud rate is the rate at which the machines
communicate.

What the activated Serial Monitor looks

Activating the Serial Monitor: Setting the Serial Monitor baud rate:

There are many different baud rates, (9600 is the standard
for Arduino) the higher the baud rate the faster the machines
are communicating.

SIK BINDER //80

Name:
Date:

CHAPTER 4
Serial Basics

Serial setup:
The first thing you need to know to use Serial with your
Arduino code is Serial setup. To setup Serial you simply type
the following line inside your setup() function: 	
Serial.begin (9600);

This line establishes that you are using the Digital Pins # 0
and # 1 for Serial communication. This means that you will
not be able to use these pins as Input or Output because you
are dedicating them to Serial communication. The number
9600 is the baud rate, this is the rate at which the computer
and the Arduino communicate. You can change the baud rate
depending on your needs but you need to make sure that the
baud rate in your Serial setup and the baud rate on your Serial
Monitor are the same. If your baud rates do not match up the
Serial Monitor will display what appears to be gibberish, but
is actually the correct communication incorrectly translated.

Using Serial for code debugging and circuit
troubleshooting:
Once Serial is configured using the basic communication for
debugging and troubleshooting is pretty easy. Anywhere in
your sketch you wish the Arduino board to send a message
type the line Serial.println(“communication here”);. This
command will print whatever you type inside the quotation
marks to the Serial Monitor followed by a return so that
the next communication will print to the next line. If you
wish to print something without the return use Serial.
print(“communication here”);. To display the value of a
variable using println simple remove the quotation marks and
type the variable name inside the parenthesis. For example,
type Serial.println(i); to display the value of the variable

named i. This is useful in many different ways, if, for example,
you wish to print some text followed by a variable or you
want to display multiple variables before starting a new line
in the Serial Monitor.

These lines are useful if you are trying to figure out what
exactly your Arduino code is doing. Place a println command
anywhere in the code, if the text in the println command
shows up in your Serial Monitor you will know exactly when
the Arduino reached that portion of code, if the text does not
show up in the Serial Monitor you know that portion of code
never executed and you need to rewrite.

To use Serial to troubleshoot a circuit use the println
command just after reading an input or changing an
output. This way you can print the value of a pin signal.
For example, type Serial.print(“Analog pin 0 reads:”); and
Serial.println(analogRead(A0)); to display the signal on
Analog Input Pin # 0. Replace the second portion with Serial.
println(digitalRead(10)); to display the signal on Digital Pin
10.

Things to remember about Serial from this page:
1. If Serial is displaying gibberish check the baud rates.
2. Use Serial.print(“communication here”); to display text.
3. Use Serial.println(“communication here”); to display text and
start a new line.
4. Use Serial.print(variableName); to display the value stored
in variableName.
5. Use Serial.print(digitalRead(10)); to display the state of
Digital Pin # 10.

SIK BINDER //81

Name:
Date:

CHAPTER 4
Serial Basics

Using Serial for communication:
This is definitely beyond the scope of the S.I.K. but here
are some basics for using Serial for device to device
communication (other than your computer), not just debugging
or troubleshooting. (The following paragraphs assume that
you have Serial Communication hardware properly connected
and powered on two different devices.)

First set up Serial as outlined on the previous page.

Use Serial.println(“Outgoing communication here”); to send
information out on the transmit line.

When receiving communication the Serial commands get a
little more complicated. First you need to tell the RedBoard
to listen for incoming communication. To do this you use the
command Serial.available();, this command tells the computer
how many bytes have been sent to the receive pin and are
available for reading. The Serial receive buffer (computer
speak for a temporary information storage space) can hold
up to 128 bytes of information.

Once the RedBoard knows that there is information available
in the Serial receive buffer you can assign that information to
a variable and then use the value of that variable to execute
code. For example to assign the information in the Serial
receive buffer to the variable incomingByte type the line;
incomingByte = Serial.read(); Serial.read() will only read the
first available byte in the Serial receive buffer, so either use
one byte communications or study up on parsing and string
variable types. Below is an example of code that might be
used to receive Serial communication at a baud rate of 9600.

//declare the variable incomingByte and assign it the value 0.
int incomingByte = 0;

void setup () {
//establish serial communication at a baud rate of 9600
	 Serial.begin(9600);
}
void loop () {
//if there is information in the Serial receive buffer
	 if (Serial.available() > 0){
//assign the first byte in buffer to incomingByte
		 incomingByte = Serial.read();
	 }
	 if (incomingByte == ‘A’){ //if incomingByte is A
		 //execute code inside these brackets if
incomingByte is A
	 }
	 if (incomingByte == ‘B’){ //if incomingByte is B
		 //execute code inside these brackets if
incomingByte is B
	 }
}

Additional things to note about Serial:
You cannot transmit and receive at the same time using
Serial, you must do one or the other. You cannot hook more
than two devices up to the same Serial line. In order to
communicate between more than two devices you will need
to use an Arduino library such as NewSoftSerial.
 	
Things to remember about Serial from this page:
1. Serial communication requires knowing some code, but
you can just look it up!
2. You cannot transmit and receive at the same time or hook
up more than two devices.

SIK BINDER //82

CHAPTER 4
Serial Debugging and Troubleshooting Activity

Name:
Date:

Practicing simple Serial for debugging code:
If you would like to practice using Serial for code debugging open the code file Serial01, copy the text and paste it into an
Arduino sketch. This sketch is mainly empty and waiting for you to add the Serial commands.

1. First type in the command line that begins Serial at a baud rate of your choosing below where the comment reads “place
serial setup here”.

2. Next open the Serial Monitor and make sure it matches the baud rate you chose. This is an example of setting up Serial
communication.

3. Next type a single Serial command that will display the text “Loop starts here” below the comment “place serial statement
1 here”. Make sure the command you use starts a new line after this text is displayed.

4. Then type a single Serial command that will display the text “Variable i is equal to “ below the comment “place serial
statement 2 here”. Make sure you use the command that does not start a new line after this text is displayed.

5. Now add a command below this that will display the variable i. If you are having trouble with this portion don’t forget that
only text needs quotation marks around it for display in the Serial Monitor. This is an example of how you can use Serial
communication to label your communication when you are trying to debug a troublesome variable.

6. Below the comment “place serial statement 3 here” add a command that will display the text “this text displays when i
is equal to 8” and then start a new line. This is an example of how to display a variable value for debugging.

7. Below the comment “place serial statement 4 here” add a command that will display the text “this text displays when
i is equal to 9” and then start a new line. This is an example of using Serial communication see if a portion of code ever
actually executes.

8. Below the comment “place serial statement 5 here” add a command that will display the text “Loop ends here” and
then start a new line.

// Activity

SIK BINDER //83

Using Serial for communication:
This is definitely beyond the scope of the S.I.K. but here are some basics for using Serial for device to device communication
(other than your computer), not just debugging or troubleshooting. (The following paragraphs assume that you have Serial
Communication hardware properly connected and powered on two different devices.)

First set up Serial as outlined on the previous page.

Use Serial.println(“Outgoing communication here”); to send information out on the transmit line.

When receiving communication the Serial commands get a little more complicated. First you need to tell the Arduino to
listen for incoming communication. To do this you use the command Serial.available();, this command tells the computer
how many bytes have been sent to the receive pin and are available for reading. The Serial receive buffer (computer speak
for a temporary information storage space) can hold up to 128 bytes of information.

Once the RedBoard knows that there is information available in the Serial receive buffer you can assign that information
to a variable and then use the value of that variable to execute code. For example to assign the information in the Serial
receive buffer to the variable incomingByte type the line; incomingByte = Serial.read(); Serial.read() will only read the first
available byte in the Serial receive buffer, so either use one byte communications or study up on parsing and string variable
types. Below is an example of code that might be used to receive Serial communication at a baud rate of 9600.

// Activity

CHAPTER 4
Serial Debugging and Troubleshooting Activity

Name:
Date:

SIK BINDER //84

SIK BINDER //85

SIK BINDER //86

5
Logic Flow/Schematics

SIK BINDER //87

Logic Flow/Schematics

SIK BINDER //88

CHAPTER 5
Logic Flow Charts

Logic Flow Charts are a great way to sketch out how you
want a circuit or chunk of code to act once it is completed.
This way you can figure out how the whole project will act
without getting distracted or confused by little details like
electricity or programming. It’s kind of like a game plan that
a coach will put together before a game.

There are four major pieces that you will use over and over
again when creating Logic Flow Charts. The four Logic Flow
pieces are represented by a circle, a square, a diamond and
lines connecting all the circles, squares and diamonds.

The circle is used to represent either a starting point, or a
stopping point. This is easy to remember since you start every
single Logic Flow Chart with a circle containing the word Start
or Begin. Often you will end a Logic Flow Chart with an End
or Finish circle, but sometimes there is no end to the chart
and it simply begins again. This is the case with any circuits
that never turn off, but are always on and collecting data.

The square is used to represent any action which has only
one outcome. For example, when a video game console is
turned on it always checks to see what video game is in it. It
does this every time after it starts up and it never checks in a
different way. This kind of action is represented by the square,
it never changes and there is always only one outcome.

The diamond is used to represent a question or actions with
more than one possible outcome. For example, once your

video game has loaded there is often a menu with a bunch
of options. This would be written in a Logic Flow Chart as
a diamond with something like the words “Start Up Menu”
written inside of it. Each action the user can take from this
menu would be represented by lines coming off the diamond
leading to another square, diamond, or circle. Maybe our
example Logic Flow Chart would have three options leading
away from the “Start Up Menu” diamond, one line to start a
new game, one to continue a saved game and another for
game settings. In the Logic Flow Chart each option is written
beside the line leading away from the diamond. It is possible
to have as many options as you like leading away from a
diamond in a Logic Flow Chart.

The lines in a Logic Flow Chart connect all the different
pieces. These are there so the reader knows how to follow
the Logic Flow Chart. The lines often have arrows on them
and lead to whichever piece (circle, square, diamond) makes
the most sense next. The lines usually have explanation of
what has happened when they lead away from diamonds, so
the reader knows which one to follow. Often some of these
lines will run to a point closer to the beginning of the Logic
Flow Chart. For example, the “Save Game” option might lead
back to the “Start Up Menu” diamond, or it might lead straight
to “Save and Quit.” It’s up to you, you’re the one making the
Logic Flow Chart! All it has to do is make sense to you. Use
the first Logic Flow Chart on the next page to help figure out
how to use a Logic Flow Chart. Look at the second example,
then complete the remaining Logic Flow Chart examples.

// Logic Flow Charts (part 1)

SIK BINDER //89

Name:
Date:

CHAPTER 5
Logic Flow Charts

Circles represent either start or end. Squares represent actions with one outcome. Diamonds
represent a question or action with multiple possible outcomes.
Lines and arrows represent logical paths between the circles, squares and diamonds.

// Logic Flow Charts (part 2)

Example 1:

Example 2:

SIK BINDER //90

Name:
Date:

CHAPTER 5
Logic Flow Charts

Fill in the lines and arrows. There is no right answer, but it must make sense.

Fill in the lines and text. Write outside of the boxes as necessary or use the back of the worksheet.

// Logic Flow Charts (part 3)
Example 3:

Example 4:

SIK BINDER //91

Fill in the lines and arrows. There is no right answer, but it must make sense.

Name:
Date:

CHAPTER 5
Schematics

// Schematics
An electrical schematic is a bunch of symbols representing one or more electrical circuits. Electrical schematics are a
great way to sketch out the physical layout of a circuit. With a schematic it is possible to share circuit and prototypes ideas
without giving away your electronics or creating an overlay. Being able to read schematics is definitely a useful skill anytime
electronics are involved. Once you are able to read schematics, creating schematics just takes practice and a sharp eye
when looking at wires and components.

There are four major pieces that you will use over and over again when creating schematics. The four schematic pieces
are power source, ground, components and the wire (or whatever your conductive connecting material is) connecting all
the different parts. While schematics can be created by hand, these days electrical schematics are usually created using
Electrical CAD software. Electrical CAD software is used to make sure that all schematics follow the same guidelines,
making them easier to understand. While electrical schematics show how circuits are connected, they do not show what
the completed circuit will look like. Schematics are guidelines, not physical representations of the circuits.

The power source symbol is a small circle with the voltage written beside it. Power sources
come in all sizes, but the S.I.K. mainly uses a 5V power source. Arduino output pins can also be
used as power sources, so even though they are categorized as components (or at least a part
of a component, the Arduino) they are often treated as power sources. Power sources are
where the electricity necessary to make circuits work comes from.

The ground symbol used in the S.I.K. is three horizontal lines, which decrease in width as
they get closer to the bottom of the symbol with the letters Gnd beside or below them. In
an electrical schematic ground can have a couple different types, this worksheet explains
the most common, earth ground. An earth ground is a return path for electrical current
as well as a reference point for measuring voltage. The term “earth ground” implies that
the ground is a physical connection to the earth. This is sometimes true, but often ground
is simply a connection to the lowest voltage value in a circuit or piece of equipment.
The voltage value of ground will never change no matter how much electrical current
it is absorbing.

Components are represented by a bunch of different symbols. There are tons of different
components with new types being invented every day! These are the parts of the circuit
that use the electrical current to make stuff happen. This can be input or output, digital or
analog, complicated (Arduino board) or very simple (resistor). These components can do many
different things and it is important to understand the particular component in the schematic
if you really want to know what the circuit is doing and how it uses electrical current.

Wires are represented by simple lines. The wires in a schematic connect all the different
pieces. Pay attention to what wires look like in a schematic when they cross. If the wires
are connected the lines will be straight with a circle where they cross, if the wires are not
connected one of the wires will form a semi-circle where the lines cross.

other types:

SIK BINDER //92

// Common Schematic Symbols

Name:
Date:

CHAPTER 5
Schematics

