

James M. Hill

Physics Handbook

Kinematics - Graphical Analysis

$>$ Slope at any point is the instantaneous velocity.
$>$ Sign of the slope indicates the direction the object is travelling.
$>$ Distance is the sum of the displacements in both directions. > Average velocity is the object's displacement divided by the time.
> Average speed is the object's distance divided by the time.
> Slope at any point is the instantaneous acceleration.
$>$ Sign of the slope indicates the direction of the acceleration not the object. $>$ Distance travelled during a time interval is the sum of the areas contained between the graph and the time-axis. $>$ Displacement is the total area of the top minus the total area of the bottom. > Average velocity is the object's displacement divided by the time. $>$ Average speed is the object's distance divided by the time.
In the equations that follow all variables that are vectors could have a horizontal and vertical component. You have to remember to analyze each dimension independently if the problem warrants.

Mathematical Addition of Vectors

! Look very carefully at the trigonometry when calculating vector components.

Kinematics - Mathematical Analysis \& Projectile Motion

Symbol	Quantity (Unit)		Symbol	Quantity (Unit)		Symbol		Quantity (Unit)		
anything $_{f}$	Final value		\|anything		Magnitude		d		Distance (m)	
anythingo	Initial Value		\vec{d}	Displacement (m)		$v_{s p}$		Average Speed (m/s)		
anything ${ }_{x}$	Horizontal component		$\vec{v}_{\text {avg }}$	Average velocity (m / s)		t		time (s; refers to a time interval)		
anything $^{\text {a }}$	Vertical component		$\stackrel{\rightharpoonup}{v}$	Velocity (m / s)		θ		Angle made with horizontal (degrees, ${ }^{\circ}$)		
anything	Eastern component		\vec{a}	Acceleration ($\mathrm{m} / \mathrm{s}^{2}$)		Δ		Change in (final - initial)		
anything $_{N}$	Northern component		\vec{g}	$9.81\left(\mathrm{~m} / \mathrm{s}^{2}\right.$; surface of the Earth)						
$\vec{v}_{\text {avg }}=\frac{\vec{d}_{f}-\vec{d}_{o}}{t}$	$v_{s p}=\frac{d}{t}$		${ }^{\text {a }}=\frac{\vec{v}_{f}+\vec{v}_{o}}{2}$	$\vec{a}=\frac{\vec{v}_{f}-\vec{v}_{o}}{t}$	$\vec{d}_{f}=\vec{d}_{o}+\vec{v}_{o} t+\frac{1}{2} \vec{a} t^{2}$		$\vec{v}_{f}{ }^{2}=\vec{v}_{o}{ }^{2}+2 \vec{a}\left(\vec{d}_{f}-\vec{d}_{o}\right)$			
$v_{o x}=\|\vec{v}\| \cos \theta$	$v_{o y}=\|\vec{v}\| \sin \theta$		$v_{f x}{ }^{2}+v_{f y}{ }^{2}$	$\theta=\tan ^{-1}\left\|\frac{v_{y}}{v_{x}}\right\|$						

Dynamics - Forces, Impulse, Torque, Momentum, \& Circular Motion

Work, Energy, \& Power

Current Electricity

Symbol	Quantity (Unit)			Symbol		Symbol	Quantity (Unit)
$I \quad$ Cur	Current (A; amperes)			q	Charge (C; co	t	Time (s)
N Nu	Number of charges, resistors			e	Elementary	R	Resistance (Ω; Ohm)
ρ Re	Resistivity ($\Omega \cdot m$)			L	Length (m)	A	Cross-sectional area (m^{2})
V, ε Po	Potential Difference (V; volts)			V_{T}	Voltage of p	I_{T}	Current from power source (A)
$R_{\text {eqs }}$ Eq	Equivalent Resistance-series (Ω)			$R_{\text {eqp }}$	Equivalent R	P	Power (W)
$C_{\text {eqp }} \quad$Eq ca	Equivalent capacitance for capacitors in parallel (F)			$C_{\text {eqs }}$	Equivalent c capacitors in	τ	Discharge rate (s)
emf El	Electromotive force (V)			r	Internal Resistance (Ω)	E	Electrical energy (J)
$I=\frac{\Delta q}{\Delta t}$	$q=N e$	$R=\rho \frac{L}{A}$		$V=I R$	$R_{\text {eqs }}=R_{1}$	$\frac{1}{R_{\text {eqp }}}=$	$\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\cdots+\frac{1}{R_{N}}$
$R_{e q}=\frac{V_{T}}{I_{T}}$	$P=I V$	$\tau=R C$		$=Q_{o} e^{\frac{-t}{\tau}}$	$C_{\text {eqp }}=$	$\frac{1}{C_{e q s}}=$	$\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\cdots+\frac{1}{C_{N}}$
$I(t)=I_{o} e^{\frac{-t}{\tau}}$	$V_{\text {terminal }}=e m f-I r$		Efficiency $=\frac{E_{\text {out }}}{E_{\text {in }}}=\frac{\text { Work }}{} E_{\text {in }}$				

Gravitational \& Electrical Fields

Symbol	Quantity (Unit)		Symbol	Quantity (Unit)		Symbol	Quantity (Unit)		
$\vec{F}_{q} \quad$ Electr	Electrostatic Force (N)		q	Electric Charge (C)		k		$0^{9}\left(\frac{N \cdot m^{2}}{C^{2}}\right),$	ulomb's
Dis	Distance from centres (m)		\vec{E}	Electric field intensity $\left(\frac{N}{C}\right)$		\vec{g}	Gra	tional Fie	Intensity ($\left.\frac{N}{\mathrm{~kg}}\right)$
$\vec{F}_{g} \quad$ For	Force of gravity (N)		E_{g}	Gravitational potential energy (J)		E_{q}	Ele	poten	nergy (J)
$V \quad$ Ele	Electric potential difference (V)) m	Mass of object (kg)		G	6.67 grav	$\begin{aligned} & \times 10^{-11}\left(\frac{N}{k}\right. \\ & \text { ational cor } \end{aligned}$	Universal ant
W Wor	Work (J)		ε_{o}	$8.85 \times 10^{-12}(\mathrm{~F} / \mathrm{m})$ Permittivity of free space.		C	Cap	ance (F	led farads)
$Q \quad$ Ch	Charge stored in a capacitor (C)		κ	Dielectric constant (no unit)		d	Plate separation (m)		
$A \quad$ Pla	Plate area (m^{2})		E_{C}	Potential energy in a capacitor (J)					
$\stackrel{\rightharpoonup}{F}_{g}=G \frac{m_{1} m_{2}}{r^{2}}$	$\vec{g}=\frac{\vec{F}_{g}}{m}$	$\|\vec{g}\|=G \frac{m}{r^{2}}$	$G \frac{m}{r}=v^{2}$	$\frac{G m}{4 \pi^{2}}=\frac{r^{3}}{T^{2}}$	$E_{g}=-G \frac{m_{1} m_{2}}{r}$	$\stackrel{\rightharpoonup}{F}_{q}=k \frac{q_{1} q_{2}}{r^{2}}$		$\vec{E}=\frac{\vec{F}_{q}}{q}$	$\|\vec{E}\|=k \frac{q}{r^{2}}$
$V=\frac{E_{q}}{q}$	$V=k \frac{q}{r}$	$\Delta E_{q}=q \Delta V$	$Q=C V$	$C=\frac{\kappa \varepsilon_{o} A}{d}$	$E_{C}=\frac{1}{2} C V^{2}$	$\stackrel{\rightharpoonup}{E}=\frac{V}{d}$	$E_{q}=k \frac{q_{1} q_{2}}{r}$		

General Waves \& Sound Waves

Symbol	Quantity (Unit)			Symbol	Quantity (Unit)		Symbol	Quantity (Unit)		
T	Period (s)			f	Frequency (Hz)		v	Wave speed (m / s)		
λ	Wavelength (m)			$T_{\text {air }}$	Temp. of air (${ }^{\circ} \mathrm{Celsius}$)		$V_{\text {sound }}$	Sound speed (m / s)		
Vsrc	Source speed (m/s)			Vobs	Observer's speed (m/s)		$f_{\text {obs }}$	Observed frequency (Hz)		
$f_{s r c}$	Source frequency (Hz)			F_{T}	Force of Tension (N)		μ	Mass/unit length (kg/m)		
$T=\frac{\Delta t}{\# w a}$		$f=\frac{\# \text { waves }}{\Delta t}$	$T=\frac{1}{f}$	$f=\frac{1}{T}$	$v=f \lambda$	$v=\sqrt{\frac{F_{T}}{\mu}}$	$v_{\text {sound }}=3$	+0.59T ${ }_{\text {air }}$	$f_{\text {obs }}=f_{s r}$	$\left(\frac{v_{\text {sound }} \pm v_{\text {obs }}}{v_{\text {sound }} \overline{\overline{1}} v_{\text {src }}}\right)$

Refraction

Table 9.2 Index of Refraction of Various Substances*

Substance	Index of Refraction (n)
vacuum	1.00000
gases at $0^{\circ} \mathrm{C}, 1.013 \times 10^{5} \mathrm{~Pa}$	
hydrogen	1.00014
oxygen	1.00027
air	1.00029
carbon dioxide	1.00045
water	1.333
ethyl alcohol	1.362
glycerin	1.470
carbon disulfide	1.632

* Measured using yellow light, with a wavelength of 589 nm in a vacuum.

Substance	
solids at $20^{\circ} \mathrm{C}$	
ice (at $0^{\circ} \mathrm{C}$)	1.31
quartz (fused)	1.46
optical fibre (cladding)	1.47
optical fibre (core)	1.50
Plexiglas $^{\mathrm{TM}}$ or Lucite ${ }^{\mathrm{TM}}$	1.51
glass (crown)	1.52
sodium chloride	1.54
glass (crystal)	1.54
ruby	1.54
glass (flint)	1.65
zircon	1.92
diamond	2.42

Optics (Spherical Mirrors \& Lenses)

Symbol	Quantity (Unit)	Symbol	Quantity (Unit)	Symbol	Quantity (Unit)
f	Focal length ($\mathrm{m}, \mathrm{cm}, \mathrm{mm}$)	d_{o}	Object distance $(\mathrm{m}, \mathrm{cm}, \mathrm{mm})$	d_{i}	Image distance ($\mathrm{m}, \mathrm{cm}, \mathrm{mm}$)
h_{i}	Image height $(\mathrm{m}, \mathrm{cm}, \mathrm{mm})$	h_{o}	Object height $(\mathrm{m}, \mathrm{cm}, \mathrm{mm})$	M	Magnification
$n_{\text {lens }}$	Lens refractive index	n_{o}	Surrounding medium refractive index	R	Radius of curvature ($\mathrm{m}, \mathrm{cm}, \mathrm{mm}$)
$\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f}$	$M=\frac{h_{i}}{h_{o}}$	$M=-\frac{d_{i}}{d_{o}}$	$\frac{h_{i}}{h_{o}}=-\frac{d_{i}}{d_{o}}$	$\frac{1}{f}=\left(\frac{n_{\text {lens }}}{n_{o}}-1\right)\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)$	

Types of Lenses

Symbol	Quantity (Unit)	Symbol	Quantity (Unit)	Symbol	Quantity (Unit)
m	Maximum \# (integer)	λ	wavelength (m)	d	separation of slits (m)
W_{m}	Distance of maximum from centre (m)	L	Distance from screen (m)	θ	angle (degrees)
$m \lambda=\frac{d W_{m}}{L}$	$m \lambda=d \sin \theta$	Above is for thin film interference. $\mathrm{n}=$ refractive index of the film			

Solar System Data									
Quantity	Sun	Mercury	Venus	Earth	Mars	Jupiter	Saturn	Uranus	Neptune
Distance from Sun	N/A	5.8×10^{10}	1.1×10^{11}	1.5×10^{11}	2.3×10^{11}	7.8×10^{11}	1.4×10^{12}	2.9×10^{12}	4.5×10^{12}
Radius	7.0×10^{8}	2.5×10^{6}	6.1×10^{6}	6.4×10^{6}	3.4×10^{6}	7.1×10^{7}	6.0×10^{7}	2.6×10^{7}	2.5×10^{7}
Mass	2.0×10^{30}	3.3×10^{23}	4.9×10^{24}	6.0×10^{24}	6.4×10^{23}	2.0×10^{27}	5.7×10^{26}	8.7×10^{25}	1.0×10^{26}
Revolution	N/A	88d	225d	365d	1.88 y	11.9 y	29 y	$84 y$	$164 y$
Rotation	Varies	58d	243d	24h	24h	10h	11h	17h	16h

Table 4.4 Free-Fall Accelerations Due to Gravity in the Solar System

Location	Acceleration due to gravity $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
Earth	9.81
Moon	1.64
Mars	3.72
Jupiter	25.9

Table 4.3 Free-Fall Accelerations Due to Gravity on Earth

Location	Acceleration due to gravity $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	Altitude (m)	Distance from Earth's centre (km)
North Pole	9.8322	0 (sea level)	6357
equator	9.7805	0 (sea level)	6378
Mt. Everest (peak)	9.7647	8850	6387
Mariana Ocean Trench* (bottom)	9.8331	11034 (below sea level)	6367
International Space Station*	9.0795	250000	6628
T			

[^0]
Definition of the Quadratic Formula

The quadratic equation is used to solve for the roots of a quadratic function. Given a quadratic equation in the form $a x^{2}+b x+c=0$, where a, b, and c are real numbers and $a \neq 0$, the roots of it can be found using

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Statistical Analysis

In science, data are collected until a trend is observed. Three statistical tools that assist in determining if a trend is developing are mean, median, and mode.

Trigonometric Ratios

The ratios of side lengths from a right-angle triangle can be used to define the basic trigonometric function sine (\sin), cosine (\cos), and tangent (tan).

$$
\begin{aligned}
\sin \theta & =\frac{\text { opposite }}{\text { hypotenuse }} \\
\sin \theta & =\frac{a}{c} \\
\cos \theta & =\frac{\text { adjacent }}{\text { hypotenuse }} \\
\cos \theta & =\frac{b}{c} \\
\tan \theta & =\frac{\text { opposite }}{\text { adjacent }} \\
\tan \theta & =\frac{a}{b}
\end{aligned}
$$

The angle selected determines which side will be called the opposite side and which the adjacent side. The hypotenuse is always the side across from the 90° angle. Picture yourself standing on top of the angle you select. The side that is directly across from your position is called the opposite side. The side that you could touch and is not the hypotenuse is the adjacent side.

Mean: The sum of the numbers divided by the number of values. It is also called the "average."
Median: When a set of numbers is organized in order of size, the median is the middle number. When the data set contains an even number of values, the median is the average of the two middle numbers.
Mode: The number that occurs most often in a set of numbers. Some data sets will have more than one mode.

See examples of these on the following page.

A scientific calculator or trigonometry tables can be used to obtain an angle value from the ratio result. Your calculator performs a complex calculation (Maclaurin series summation) when the $\sin ^{-1}$, or $\cos ^{-1}$, or $\tan ^{-1}$ operation is used to determine the angle value. Sin^{-1} is not simply a $1 /$ sin operation.

Definition of the Pythagorean Theorem

The Pythagorean theorem is used to determine side lengths of a right-angle (90°) triangle. Given a right-angle triangle ABC, the Pythagorean theorem states

$$
c^{2}=a^{2}+b^{2}
$$

\quad Quantity	Symbol	SI unit
hypotenuse side is opposite the 90° angle	c	m (metres)
side a	a	m (metres)
side b	b	m (metres)

Note: The hypotenuse is always the side across from the right $\left(90^{\circ}\right)$ angle. The Pythagorean theorem is a special case of a more general mathematical law called the "cosine law." The cosine law works for all triangles.

Definition of the Cosine Law

The cosine law is useful when

- determining the length of an unknown side given two side lengths and the contained angle between them
- determining an unknown angle given all side lengths

Angle θ is contained between sides a and b.

The cosine law states $\boldsymbol{c}^{2}=\boldsymbol{a}^{2}+\boldsymbol{b}^{2}-2 \boldsymbol{a} \boldsymbol{b} \cos \theta$.

Quantity	Symbol	SI unit
unknown length side c		
opposite angle θ	c	m (metres)
length side a	a	m (metres)
length side b	b	m (metres)
angle θ opposite unknown side c	θ	(radians)

Note: Applying the cosine law to a right angle triangle, setting $\theta=90^{\circ}$, yields the special case of the Pythagorean theorem.

Definition of the Sine Law

The sine law is useful when

- two angles and any one side length are known
- two side lengths and any one angle are known

Given any triangle ABC the sine law states

$$
\frac{\sin \mathrm{A}}{a}=\frac{\sin \mathrm{B}}{b}=\frac{\sin \mathrm{C}}{c}
$$

Quantity

length side a opposite angle A
length side b opposite angle B length side c opposite angle C angle A opposite side a angle B opposite side b angle C opposite side c
Symbol
a
b
c
A
B
C

SI unit

 m (metres) m (metres) m (metres) (radians) (radians) (radians)Note: The sine law generates ambiguous results in some situations because it does not discriminate between obtuse and acute triangles. An example of the ambiguous case is shown below.

Example

Use the sine law to solve for θ.

Clearly, angle θ is much greater than 30°. In this case, the supplementary angle is required $\left(180^{\circ}-30^{\circ}=150^{\circ}\right)$. It is important to recognize when dealing with obtuse angles ($>90^{\circ}$) that the supplementary angle might be required.
Application of the cosine law in these situations will help reduce the potential for error.

Algebra

In some situations, it might be preferable to use algebraic manipulation of equations to solve for a specific variable before substituting numbers. Algebraic manipulation of variables follows the same rules that are used to solve equations after substituting values. In both cases, to maintain equality, whatever is done to one side must be done to the other.

TRIGONOMETRIC IDENTITIES

- Reciprocal identities

$$
\begin{array}{ll}
\sin u=\frac{1}{\csc u} & \cos u=\frac{1}{\sec u} \\
\tan u=\frac{1}{\cot u} & \cot u=\frac{1}{\tan u} \\
\csc u=\frac{1}{\sin u} & \sec u=\frac{1}{\cos u}
\end{array}
$$

- Pythagorean Identities

$$
\begin{aligned}
& \sin ^{2} u+\cos ^{2} u=1 \\
& 1+\tan ^{2} u=\sec ^{2} u \\
& 1+\cot ^{2} u=\csc ^{2} u
\end{aligned}
$$

- Quotient Identities

$$
\tan u=\frac{\sin u}{\cos u} \quad \cot u=\frac{\cos u}{\sin u}
$$

- Co-Function Identities

$$
\begin{array}{ll}
\sin \left(\frac{\pi}{2}-u\right)=\cos u & \cos \left(\frac{\pi}{2}-u\right)=\sin u \\
\tan \left(\frac{\pi}{2}-u\right)=\cot u & \cot \left(\frac{\pi}{2}-u\right)=\tan u \\
\csc \left(\frac{\pi}{2}-u\right)=\sec u & \sec \left(\frac{\pi}{2}-u\right)=\csc u
\end{array}
$$

- Parity Identities (Even \& Odd)

$$
\begin{array}{ll}
\sin (-u)=-\sin u & \cos (-u)=\cos u \\
\tan (-u)=-\tan u & \cot (-u)=-\cot u \\
\csc (-u)=-\csc u & \sec (-u)=\sec u
\end{array}
$$

- Sum \& Difference Formulas

$$
\begin{aligned}
& \sin (u \pm v)=\sin u \cos v \pm \cos u \sin v \\
& \cos (u \pm v)=\cos u \cos v \mp \sin u \sin v \\
& \tan (u \pm v)=\frac{\tan u \pm \tan v}{1 \mp \tan u \tan v}
\end{aligned}
$$

- Double Angle Formulas

$$
\begin{aligned}
\sin (2 u) & =2 \sin u \cos u \\
\cos (2 u) & =\cos ^{2} u-\sin ^{2} u \\
& =2 \cos ^{2} u-1 \\
& =1-2 \sin ^{2} u \\
\tan (2 u) & =\frac{2 \tan u}{1-\tan ^{2} u}
\end{aligned}
$$

- Power-Reducing/Half Angle Formulas

$$
\begin{aligned}
\sin ^{2} u & =\frac{1-\cos (2 u)}{2} \\
\cos ^{2} u & =\frac{1+\cos (2 u)}{2} \\
\tan ^{2} u & =\frac{1-\cos (2 u)}{1+\cos (2 u)}
\end{aligned}
$$

- Sum-to-Product Formulas

$\sin u+\sin v=2 \sin \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right)$
$\sin u-\sin v=2 \cos \left(\frac{u+v}{2}\right) \sin \left(\frac{u-v}{2}\right)$
$\cos u+\cos v=2 \cos \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right)$
$\cos u-\cos v=-2 \sin \left(\frac{u+v}{2}\right) \sin \left(\frac{u-v}{2}\right)$

- Product-to-Sum Formulas

$\sin u \sin v=\frac{1}{2}[\cos (u-v)-\cos (u+v)]$
$\cos u \cos v=\frac{1}{2}[\cos (u-v)+\cos (u+v)]$
$\sin u \cos v=\frac{1}{2}[\sin (u+v)+\sin (u-v)]$
$\cos u \sin v=\frac{1}{2}[\sin (u+v)-\sin (u-v)]$

GEOMETRY SHAPESAND SOLIDS

SQUARE

$$
\begin{aligned}
& P=4 s \\
& A=s^{2}
\end{aligned}
$$

TRIANGLE

$P=a+b+c$
$A=\frac{1}{2} b h$

PYTHAGOREAN THEOREM

TRAPEZOID

CUBE

$A=6 l^{2}$
$V=l^{3}$

RECTANGLE

$P=2 a+2 b$
 $A=a b$

PARALLELOGRAM

$P=2 a+2 b$
 $A=b h$

CIRCULAR RING

$$
A=\pi\left(R^{2}-r^{2}\right)
$$

RECTANGULAR BOX

$A=2 a b+2 a c+2 b c$
$V=a b c$

CYLINDER

eCalc.com

The Best Online Calculator

- Unit Converter
- RPN and Algebraic Mode
- Constants Library
- Decimal to Fraction
- Polynomial Root Solver
- Simultaneous Equation Solver
- Complex Numbers
- Free Online and Downloadable

CIRCLE

$$
\begin{aligned}
& P=2 \pi r \\
& A=\pi r^{2}
\end{aligned}
$$

CIRCULAR SECTOR

$L=\pi r \frac{\theta}{180^{\circ}}$

SPHERE

$S=4 \pi r^{2}$
$V=\frac{4 \pi r^{3}}{3}$

RIGHT CIRCULAR CONE

$A=\pi r^{2}+\pi r s$
$s=\sqrt{r^{2}+h^{2}}$
$V=\frac{1}{3} \pi r^{2} h$

FRUSTUM OF A CONE

$V=\frac{1}{3} \pi h\left(r^{2}+r R+R^{2}\right)$

Appendix A

The Metric System: Fundamental and Derived Units

Metric System Prefixes

Prefix	Symbol	Factor
tera	T	$1000000000000=10^{12}$
giga	G	$1000000000=10^{9}$
mega	M	$1000000=10^{6}$
kilo	k	$1000=10^{3}$
hecto	h	$100=10^{2}$
deca	da	$10=10^{1}$
		$1=10^{0}$
deci	d	$0.1=10^{-1}$
centi	c	$0.01=10^{-2}$
milli	m	$0.001=10^{-3}$
micro	μ	$0.000001=10^{-6}$
nano	n	$0.000000001=10^{-9}$
pico	p	$0.000000000001=10^{-12}$
femto	f	$0.000000000000001=10^{-15}$
atto	a	$0.000000000000000001=10^{-18}$

Fundamental Physical Quantities and Their SI Units

Quantity	Symbol	Unit	Symbol
length	l	metre	m
mass	m	kilogram	kg
time	t	second	s
absolute temperature	T	Kelvin	K
electric current	I	ampère	A
amount of substance	mol	(amp)	
mole	mol		

Derived SI Units

Quantity	Quantity symbol	Unit	Unit symbol	Equivalent unit(s)
```area volume velocity acceleration force work energy power density pressure frequency period wavelength electric charge electric potential resistance magnetic field intensity magnetic flux radioactivity radiation dose temperature (Celsius)```	$A$ $V$ $V$ $a$ $F$ $W$ $E$ $P$ $\rho$ $p$ $f$ $T$ $\lambda$ $Q$ $V$ $R$ $B$ $\Phi$ $\Delta N / \Delta t$ $T$	square metre   cubic metre   metre per second   metre per second   per second   newton   joule   joule   watt   kilogram per cubic metre   pascal   hertz   second   metre   coulomb   volt   ohm   tesla   weber   becquerel   gray   degree Celsius   atomic mass unit   electron volt	$\mathrm{m}^{2}$ $\mathrm{~m}^{3}$ $\mathrm{~m} / \mathrm{s}$ $\mathrm{m} / \mathrm{s}^{2}$ N J J W $\mathrm{~kg} / \mathrm{m}^{3}$ Pa Hz s m C V $\Omega$ T T Wb Bq Gy ${ }^{\circ} \mathrm{C}$ u eV	$\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$   $\mathrm{N} \cdot \mathrm{m}, \mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}$   $\mathrm{N} \cdot \mathrm{m}, \mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}$   $\mathrm{J} / \mathrm{s}, \mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{3}$ $\underset{\mathrm{s}^{-1}}{\mathrm{~N} / \mathrm{m}^{2}, \mathrm{~kg} /\left(\mathrm{m} \cdot \mathrm{~s}^{2}\right)}$   A.s   W/A, J/C,   $\mathrm{kg} \cdot \mathrm{m}^{2} /\left(\mathrm{C} \cdot \mathrm{s}^{2}\right)$   V/A,   $\mathrm{kg} \cdot \mathrm{m}^{2} /\left(\mathrm{C}^{2} \cdot \mathrm{~s}\right)$   $\mathrm{N} \cdot \mathrm{s} /(\mathrm{C} \cdot \mathrm{m}), \mathrm{N} /(\mathrm{A} \cdot \mathrm{m})$   $\mathrm{V} \cdot \mathrm{s}, \mathrm{T} \cdot \mathrm{m}^{2}, \mathrm{~m}^{2} \cdot \mathrm{~kg} /(\mathrm{C} \cdot \mathrm{s})$ $\mathrm{s}^{-1}$   $\mathrm{J} / \mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}$   $T^{\circ} \mathrm{C}=(\mathrm{T}+273.15) \mathrm{K}$   $1 \mathrm{u}=1.660566 \times 10^{-27} \mathrm{~kg}$   $1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$

## Appendix B

## Physical Constants and Data

## Fundamental Physical Constants

Ouantity	Symbol	Accepted value
speed of light in a vacuum	$c$	$2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$
gravitational constant	$G$	$6.673 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
Coulomb's constant	$k$	$8.988 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$
charge on an electron	$e$	$1.602 \times 10^{-19} \mathrm{C}$
rest mass of an electron	$m_{\mathrm{e}}$	$9.109 \times 10^{-31} \mathrm{~kg}$
rest mass of a proton	$m_{\mathrm{p}}$	$1.673 \times 10^{-27} \mathrm{~kg}$
rest mass of a neutron	$m_{\mathrm{n}}$	$1.675 \times 10^{-27} \mathrm{~kg}$
Planck's constant	$h$	$6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$

Electric Circuit Symbols


## Other Physical Data

Quantity	Symbol	Accepted value
standard atmospheric pressure   speed of sound in air   water: density ( $4^{\circ} \mathrm{C}$ )   latent heat of fusion   latent heat of vaporization   specific heat capacity $\left(15^{\circ} \mathrm{C}\right)$   kilowatt hour   acceleration due to Earth's gravity   mass of Earth   mean radius of Earth   mean radius of Earth's orbit   period of Earth's orbit   mass of Moon   mean radius of Moon   mean radius of Moon's orbit   period of Moon's orbit   mass of Sun   radius of Sun	P   E   g   $m_{E}$   $r_{\mathrm{E}}$   $R_{\mathrm{E}}$   $T_{\mathrm{E}}$   $m_{\mathrm{M}}$   $r_{\mathrm{M}}$   $R_{\mathrm{M}}$   $T_{\mathrm{M}}$   $m_{\text {s }}$   $r_{\mathrm{s}}$	$\begin{aligned} & 1.013 \times 10^{5} \mathrm{~Pa} \\ & 343 \mathrm{~m} / \mathrm{s}\left(\text { at } 20^{\circ} \mathrm{C}\right) \\ & 1.000 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3} \\ & 3.34 \times 10^{5} \mathrm{~J} / \mathrm{kg} \\ & 2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg} \\ & 4186 \mathrm{~J} /\left(\mathrm{kg}^{\circ} \mathrm{C}\right) \\ & 3.6 \times 10^{6} \mathrm{~J} \\ & 9.81 \mathrm{~m} / \mathrm{s}^{2}(\text { standard value; at sea level }) \\ & 5.98 \times 10^{24} \mathrm{~kg} \\ & 6.38 \times 10^{6} \mathrm{~m} \\ & 1.49 \times 10^{11} \mathrm{~m} \\ & 365.25 \text { days or } 3.16 \times 10^{7} \mathrm{~s} \\ & 7.36 \times 10^{22} \mathrm{~kg} \\ & 1.74 \times 10^{6} \mathrm{~m} \\ & 3.84 \times 10^{8} \mathrm{~m} \\ & 27.3 \text { days or } 2.36 \times 10^{6} \mathrm{~s} \\ & 1.99 \times 10^{30} \mathrm{~kg} \\ & 6.96 \times 10^{8} \mathrm{~m} \end{aligned}$

## Resistor Colour Codes

Colour	Digit   represented	Multiplier	Tolerance
$\square$ black	0	$\times 1$	
$\square$ brown	1	$\times 1.0 \times 10^{1}$	
red	2	$\times 1.0 \times 10^{2}$	
orange	3	$\times 1.0 \times 10^{3}$	
yellow	4	$\times 1.0 \times 10^{4}$	
green	5	$\times 1.0 \times 10^{5}$	
blue	6	$\times 1.0 \times 10^{6}$	
violet	7	$\times 1.0 \times 10^{7}$	
gray	8	$\times 1.0 \times 10^{8}$	
$\square$ white	9	$\times 1.0 \times 10^{9}$	
gold		$\times 1.0 \times 10^{-1}$	$5 \%$
silver		$\times 1.0 \times 10^{-2}$	$10 \%$
no colour			$20 \%$




[^0]:    *These values are calculated.

