Guided Displacement and Velocity Problems ***Note how we approach physics problems using the handbook*** 2 a) Calculate the average velocity, in m/s, of Venus the instant it has traveled half of its circular orbit around the Sun. *Sketch a diagram* _____ *Determine quantities needed* *Create a coordinate system* $$\vec{v}_{avg} = \frac{\vec{d}}{t}$$ required $\vec{d} = ?$ $t = ?$ *Use learned & prior knowledge* \vec{d} = change in position \vec{d} = diameter of circle t = time to change position $t = \frac{1}{2}$ a Venus year (seconds) *Obtain values from handbook* Venus distance from Sun, the radius = 108 million km, so diameter is 216 million km. $$\vec{d}$$ = 216 x 10⁶ km[N] $\times 10^{3}$ m/km \vec{d} = 216 x 10⁹ m[N] $t = \frac{1}{2}$ x 225 days x 24 h/day x 60 min/h x 60 s/min $t = 9.72$ x 10⁶ s *Complete Problem* $$\vec{v}_{avg} = \frac{\vec{d}}{t}$$ $$\vec{v}_{avg} = \frac{216 \times 10^9 \text{ m [N]}}{9.72 \times 10^6 \text{ s}}$$ $$\vec{v}_{avg} = 2.22 \times 10^4 \text{ m/s [N]}$$ ## **Guided Displacement and Velocity Problems** ***Note how we approach physics problems using the handbook*** 2 b) Calculate the average speed, in m/s, of Venus the instant it has traveled half of its circular orbit around the Sun. *Sketch a diagram* ______ *Determine quantities needed* $$v_{sp} = \frac{d}{t} > \text{required}$$ $$d = ? \qquad t = ?$$ *Use learned & prior knowledge* d = length of path $d = \frac{1}{2}$ circumference of circle t = time to travel distance $t = \frac{1}{2}$ a Venus year (seconds) *Obtain values from handbook* Venus distance from Sun, the radius = 108 million km $$d = \frac{1}{2} \times 2\pi r$$, where $r = 108 \times 10^6 \text{ km} \times \frac{10^3 \text{ m/km}}{200 \text{ m}} = 108 \times 10^9 \text{ m}$ $d = (3.14)(108 \times 10^9 \text{ m})$ $d = 3.39 \times 10^{11} \text{ m}$ $t = \frac{1}{2} \times 225 \text{ days } \times 24 \text{ h/day } \times 60 \text{ min/h } \times 60 \text{ s/min}$ $$t = 9.72 \times 10^6 \text{ s}$$ *Complete Problem* $$v_{sp} = \frac{d}{t}$$ $$v_{sp} = \frac{3.39 \times 10^{11} \text{ m}}{9.72 \times 10^{6} \text{ s}}$$ $$v_{sp} = 3.49 \times 10^{4} \text{ m/s}$$ moving-man_en.jnlp