Worksheet - Molar Calculations

Percent Composition

The relative amounts of element in a compound are expressed as the percent composition (by mass) for each element within the compound.

Ex. K₂CrO₄

K - 40.3%

Cr - 26.8%

O - 32.9%

Percent Composition from Mass Data

When a 13.60 g sample containing only magnesium and oxygen is decomposed, 5.40 g of oxygen is obtained. What is the percent composition of this compound?

MgO
$$\rightarrow$$
 Mg + O_2
13.60g 8.20g 5.40g
% Mg = $\frac{\text{mass Mg}}{\text{mass MgO}} \times 100\%$.
% Mg = $\frac{8.20g}{13.60g} \times 100\%$.
% Mg = $\frac{8.20g}{13.60g} \times 100\%$.
% Mg = $\frac{8.20g}{13.60g} \times 100\%$.

Percent Composition from the Chemical Formula

Ex. Na₂CO₃

Lo
$$(2 \times 22.99) + (1 \times 12.01) + (3 \times 16.00)$$

$$\frac{105.995}{100} = \underline{105.999 \text{ mol}}$$

$$\frac{105.999 \text{ mol}}{105.999 \text{ mol}} \times 100\%$$

$$\frac{105.999 \text{ mol}}{105.999 \text{ mol}} \times 100\%$$

Calculate the percent composition of propane (C₃H₈).

$$90C = (3x12.01)$$
 glmol $x 100\%$ $3H = (8x1.01)$ glmol $x 100\%$ 44.11 glmol $x 100\%$

Homework

p. 306 #32, 33

p. 307 #34, 35