Homework - Worksheet

H

Extra Sheet on Heats of Formation

Same as...

Molar heat of formation= Molar heat of reaction or Molar heat of combustion

Enproducts - En reactants

Multi-Step Energy Calculations

Step 1: Find H general

- -use Hess' law
- -from equation
- -use calorimetry

Step 2: Find n (specific)

- -use mass (molar mass)
- -use concentration
- -use $n = \Delta H/H$

Step 3: $Find \Delta H$ (specific), mass, ΔT , etc.

Sample Problem

$$Ex. 2NaHCO3(s) + 129.2kJ \longrightarrow Na2CO3(s) + CO2(g) + H2O(g)$$

What quantity of energy H_r, is required to decompose 100. kg of NaHCO_{3(s)}?

1) General

$$\triangle$$
 H=NH \wedge

Sample Problem

Ex.
$$ZnS_{(s)} + 3/2O_{2(s)}$$
 — $ZnO_{(s)} + SO_{2(s)} + 441.3k5$

What quantity of energy, ΔH_{r} , can be obtained from roasting of 50.0kg of zinc sulfide ore?

$$\Delta Hr \approx \Lambda products = \sum_{n=1}^{\infty} rractants$$

$$\Delta Hr = \frac{1}{2} \log r + \frac{1}{2}$$

Calculate the mass of methane combusted when 3700. kJ of energy is released according to the following reaction.

CH_{4(g)} +
$$2O_{2(g)} \Rightarrow CO_{2(g)} + 2H_2O_{(g)} + 802.7KJ$$

DGENEVAL AHENH

 $H_1 = AH$
 $H_2 = 802.7KT$
 $H_3 = AH$
 $H_4 = A$

Worksheet #1-2

Multi-Step Energy Calculations can be used when energy produced in one chemical reaction is used to heat another substance. These calculations are very similar to calorimetry calculations.

total enthalpy change = quantity of heat

$$\Delta H_r = -q$$

Sample Problem

What mass of octane is completely burned during the heating of 20.L of aqueous ethylene glycol automobile coolant from -10°C to 70°C? The volumetric heat capacity of aqueous ethylene glycol is 3.7 kJ/L°C.

Ex.
$$2C_8H_{18(1)} + 25O_{2(g)}$$
 \longrightarrow $18H_2O_{(s)} + 16CO_{2(g)}$

Worksheet #1-5