- : An arrow is shot at an angle of 30.0° with the ground. It has a speed of 49 m/s.—Assuming the arrow is shot fromground level and it lands on the ground, answer the following questions.
 - a) How high will the arrow go? (31 m) b) Assuming the arrow lands on the ground, what is its range? 7) $d_{fy} = ?$ $g = -9.8 lm_{g^2}$ 49 sin 30 $V_{oy} = 49 sin 30$ $d_0 = 0 m$ $V_{oy} = 24.5 m/_s$ $a) d_{y} = \frac{1}{2}$ $V_{c} = Om/s$ $V_{f}^{2} = V_{0}^{2} + \lambda g (d_{f} - d_{0})$ $0 = (24.5)^2 + 2(-9.81)(d_{4} - 0)$ 0 = 600.25 - 19.62df31m=dfy 60.5et 31m=dfy 800.5et 45,6 $\frac{-600.25}{-19.62} = df$

Projectiles Notes.notebook

b)
$$d_{fx} = ?$$
 when it hits ground
 $V_{x} = \frac{d}{t} = \frac{d_{fx} - d_{ox}}{t}$
 $V_{x} = 42.4 my$
 $d_{ox} = 0m$
 $\frac{V_{x}}{V_{x}} = 7$
 $(=?)$
 $\frac{V_{x}}{V_{x}} = 0m$
 $V_{xy} = 24.5 my$
 $t = ?$
 $C_{fy} = 0m$
 $V_{xy} = 24.5 my$
 x because it lands at the same height it was lounched.
 $a = V_{f} - V_{0}$
 t
 $O = 0 + 24.5 t + \frac{1}{2}(-9.81)t^{2}$
 $O = 0 + 24.5 t + \frac{1}{2}(-9.81)t^{2}$
 $O = 24.5 t - 4.9 t^{2}$ should out $0 = t(24.5 - 4.9t)$
 $V_{xy} = \frac{1}{24.5} - 4.9t$
 $V_{xy} = \frac{1}{25} = t$
 $V_{xy} = \frac{1}{24.5} - 4.9t$
 $V_{xy} = \frac{1}{25} = t$
 $V_{xy} = \frac{1}{24.5} - 4.9t$
 $V_{xy} = \frac{1}{24.5} - 4.9t$

projectile-motion_en.jar