Physics 122: Torque Bonus Assignment

Name \qquad
Due: Monday, June 1, 2015
a) Derive a formula for the tension in the wire, F_{T}, as a function of beam length, r, given the beam has a mass per unit length, μ, a mass M hanging at the end of the beam, a gravitational acceleration, g, and the wire attaches at a point, h, above the left end of the beam. The beam is in static equilibrium.
b) Calculate the force of tension, F_{T}, in the wire for the beam with the following constants: $\mu=25.0 \mathrm{~kg} / \mathrm{m} ; \mathrm{M}=525 \mathrm{~kg} ; \mathrm{h}=12.0 \mathrm{~m} ; \mathrm{r}=16.0 \mathrm{~m}$; and $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$ (keep three significant digits in your answer).
c) Given the values of μ, M, h and g from (b), watch in awe as you get schooled while I solve a fourth degree polynomial to calculate the maximum length of the beam if the wire breaks under a tension of $22,500 \mathrm{~N}$ in under a minute.

